Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria)

. 2019 Jan 24 ; 9 (1) : 694. [epub] 20190124

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30679537
Odkazy

PubMed 30679537
PubMed Central PMC6345927
DOI 10.1038/s41598-018-36831-0
PII: 10.1038/s41598-018-36831-0
Knihovny.cz E-zdroje

The genus Arthrospira has a long history of being used as a food source in different parts of the world. Its mass cultivation for production of food supplements and additives has contributed to a more detailed study of several species of this genus. In contrast, the type species of the genus (A. jenneri), has scarcely been studied. This work adopts a polyphasic approach to thoroughly investigate environmental samples of A. jenneri, whose persistent bloom was noticed in an urban reservoir in Poland, Central Europe. The obtained results were compared with strains designated as A. platensis, A. maxima, and A. fusiformis from several culture collections and other Arthrospira records from GenBank. The comparison has shown that A. jenneri differs from popular species that are massively utilized commercially with regard to its cell morphology, ultrastructure and ecology, as well as its 16S rRNA gene sequence. Based on our findings, we propose the establishment of a new genus, Limnospira, which currently encompasses three species including the massively produced L. (A.) fusiformis and L. (A.) maxima with the type species Limnospira fusiformis.

Zobrazit více v PubMed

Iltis, A. Algues des eaux natroné du Kanem (Tchad). Cah. O.R.S.T.O.M., Hydrobiol. 7(1), 25–54 (In French, with English summary) (1973).

Ciferri O. Spirulina the edible microorganism. Microbiol. Rev. 1983;47(4):551–578. PubMed PMC

Tefera G, Hailu D, Tsegaye Z. Importance of Arthrospira Spirulina in Sustainable Development. Int. J. Curr. Trend. Pharmacobiol. Med. Sci. 2016;1(2):60–68.

Wikfors GH, Ohno M. Impact of algal research in aquaculture. J. Phycol. 2002;37(6):968–974. doi: 10.1046/j.1529-8817.2001.01136.x. DOI

Koru, E. Earth food Spirulina (Arthrospira): production and quality standards. Food Additive. - InTech 191–202, 10.5772/31848 (2012).

Sili, C., Torzillo, G. & Vonshak, A. Arthrospira (Spirulina) (ed. B. A. Whitton, B. A.) (ed) 677–705 (Springer, 2012).

Yan X, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics. 2017;2(12):eaaq1155. doi: 10.1126/scirobotics.aaq1155. PubMed DOI

Gomont M. Monographie des Oscillariées (Nostocacées Homocystées), Deuxième partie. - Lyngbyées. Annls. Sci. Nat. Bot. 1892;7(16):91–264.

Geitler, L. Cyanophyceae (ed. Pascher, A.) 1–450 (Gustav Fischer, 1925).

Komárek J, Lund JWG. What is “Spirulina platensis” in fact? Algol. Stud. 1990;58:1–13.

Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86:295–335.

Komárek, J. & Anagnostidis, K. Cyanoprokaryota II, Oscillatoriales, (eds Büdel, B., Gärtner, G., Krienitz, L. & Schagerl M.) 1–757 (Elsevier GmbH, 2005).

Van Eykelenburg C, Fuchs A. Rapid reversible macromorphological changes in Spirulina platensis. Naturwissenschaften. 1980;67:200–201. doi: 10.1007/BF01086309. DOI

Wang ZP, Zhao Y. Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): from linear to helical. J. Phycol. 2005;41:622–628. doi: 10.1111/j.1529-8817.2005.00087.x. DOI

Guiry, M. D. & Guiry, G. M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (2018).

Shih PM, et al. Improving the coverage of the cyanobacterial phylum using diversity driven genome sequencing. Proc. Natl. Acad. Sci. USA. 2013;15:1053–1058. doi: 10.1073/pnas.1217107110. PubMed DOI PMC

Hassall, A. H. A History Of The British Freshwater Algae, Including Descriptions Of The Desmideae And Diatomaceae, With Upwards Of One Hundred Plates Illustrating The Various Species, 1–462 (Spottishwoode A., New-Street-Square, 1845).

Melack JM. Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya) Limnol. Oceanogr. 1979;24:753–760. doi: 10.4319/lo.1979.24.4.0753. DOI

Okoth OE, et al. Spatial and seasonal variations in phytoplankton community structure in alkaline-saline Lake Nakuru, Kenya. Lake & Reservoirs Res. Manag. 2009;14:57–69. doi: 10.1111/j.1440-1770.2009.00392.x. DOI

Stizenberger E. Spirulina und Arthrospira (nov. gen.) Hedwigia. 1854;1(7):32–34.

Gardner, N. L. The Myxophyceae Of Porto Rico And The Virgin Islands, 1–311 (New York Academy of Sciences, 1932).

Voronichin NN. K biologii mineralizovanych vodojemov Kulundinskoj stepi. Trudy Soveta Izucheniu Prirodnych Resursov, Ser. Sibirsk. 1934;8:177–183.

Gardner NL. New Pacific coast marine algae I. Univ. Calif. Publ. Bot. 1917;6:377–416.

Desikachary, T. V. & Jeeji Bai, N. Studies in Spirulina. (eds Seshadri, C. V. & Jeeji Bai, N.) 12–21 (Spirulina. ETTA National Symposium MCRC, Madras, 1992).

Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A. Production of Spirulina biomass: effects of environmental factors and population density. Biomass. 1981;2:175–185. doi: 10.1016/0144-4565(82)90028-2. DOI

Carvalho JCM, Francisco FR, Almeida KA, Sato S, Converti A. Cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. J. Phycol. 2004;40:589–597. doi: 10.1111/j.1529-8817.2004.03167.x. DOI

Ballot A, Dadheech PK, Krienitz L. Phylogenetic relationship of Arthrospira, Phormidium and Spirulina from Kenyan and Indian waterbodies. Algol. Stud. 2004;113:37–56. doi: 10.1127/1864-1318/2004/0113-0037. DOI

Komárek J. The modern classification of Cyanoprokaryotes (Cyanobacteria) Oceanol. Hydrobiol. Stud. 2005;34(3):5–17.

Komárek J. Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae. 2006;21(4):349–375. doi: 10.4490/ALGAE.2006.21.4.349. DOI

Hindák F. Morphology of trichomes in Spirulina fusiformis Voronichin from Lake Bogoria, Kenya. Arch. Hydrobiol. Suppl. 1985;71:201–218.

Liu Y, Wang Z, Lin S, Yu G, Li R. Polyphasic characterization of Planktothrix spiroides sp. nov. (Oscillatoriales, Cyanobacteria), a freshwater bloom-forming alga superficially resembling Arthrospira. Phycologia. 2013;52(4):326–332. doi: 10.2216/13-142.1. DOI

Kufferath H. Contribution à l'étude de la flore algologique du Luxembourg meridionale. Chlorophycees (exclus. Desmidiacées), Flagellates et Cyanophycées. Ann. Biol. Lac. 1914;2:231–271.

Piñero Estrada JE, Bermejo Bescós P, Villar del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco. 2001;56(5-7):497–500. doi: 10.1016/S0014-827X(01)01084-9. PubMed DOI

Liu H, et al. Optimizing light distribution and controlling biomass concentration by continuously pre-harvesting Spirulina platensis for improving the microalgae production. Bioresour. Technol. 2017;252:14–19. doi: 10.1016/j.biortech.2017.12.046. PubMed DOI

LewisOscar F, Nithya C, Alharbi SA, Alharbi NS, Thajuddin N. In vitro and in silico attenuation of quorum sensing mediated pathogenicity in Pseudomonas aeruginosa using Spirulina platensis. Microb. Pathog. 2018;116:246–256. doi: 10.1016/j.micpath.2018.01.046. PubMed DOI

Li R, Jebessa H, Carmichael WW. Isolates identifiable as Arthrospira maxima and Arthrospira fusiformis (Oscillatoriales, Cyanobacteria) appear identical on the basis of a morphological study in culture and 16S rRNA gene sequences. Phycologia. 2001;4(4):367–371. doi: 10.2216/i0031-8884-40-4-367.1. DOI

Knysak P, Żelazna-Wieczorek J. Massive occurrence of the alien invasive Pleodorina indica (Volvocales, Chlorophyta) in a reservoir located in urban areas of Central Poland. Oceanol. Hydrobiol. Stud. 2017;46(1):116–122. doi: 10.1515/ohs-2017-0012. DOI

Zapomělová E, Řeháková K, Znachor P, Komárková J. Morphological diversity of coiled planktonic types of the genus Anabaena (cyanobacteria) in natural populations - taxonomic consequences. Cryptogam. Algol. 2007;28:353–371.

Mareš J, et al. Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples. J. Phycol. 2015;51:288–297. doi: 10.1111/jpy.12273. PubMed DOI

Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997;63:3327–3332. PubMed PMC

Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): A morphological and molecular approach. Appl. Environ. Microbiol. 2003;69:5157–5169. doi: 10.1128/AEM.69.9.5157-5169.2003. PubMed DOI PMC

Lasken RS. Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem. Soc. Trans. 2009;37(2):450–453. doi: 10.1042/BST0370450. PubMed DOI

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC

Kearse M, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 1–7, 10.1093/bib/bbx108 (2017). PubMed PMC

Trifinopoulos J, Nguyen LT, Von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC

Ronquist F, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Dataset. Mol. Biol. Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9(8):772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...