Teicoplanin-A New Use for an Old Drug in the COVID-19 Era?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34959628
PubMed Central
PMC8708781
DOI
10.3390/ph14121227
PII: ph14121227
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, SARS-CoV2, antibiotic, bacteria, co-infection, dalbavancin, lipoglycopeptide antibiotic, teicoplanin,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Teicoplanin is an antibiotic that has been actively used in medical practice since 1986 to treat serious Gram-positive bacterial infections. Due to its efficiency and low cytotoxicity, teicoplanin has also been used for patients with complications, including pediatric and immunocompromised patients. Although teicoplanin is accepted as an antibacterial drug, its action against RNA viruses, including SARS-CoV2, has been proven in vitro. Here, we provide a thorough overview of teicoplanin usage in medicine, based on the current literature. We summarize infection sites treated with teicoplanin, concentrations of the antibiotic in different organs, and side effects. Finally, we summarize all available data about the antiviral activity of teicoplanin. We believe that, due to the extensive experience of teicoplanin usage in clinical settings to treat bacterial infections and its demonstrated activity against SARS-CoV2, teicoplanin could become a drug of choice in the treatment of COVID-19 patients. Teicoplanin stops the replication of the virus and at the same time avoids the development of Gram-positive bacterial co-infections.
Zobrazit více v PubMed
Novelli G., Biancolella M., Mehrian-shai R., Colona V.L., Brito A.F., Grubaugh N.D., Vasiliou V., Luzzatto L., Reichardt J.K. V COVID-19 one year into the pandemic: From genetics and genomics to therapy, vaccination, and policy. Hum. Genom. 2021;15:27. doi: 10.1186/s40246-021-00326-3. PubMed DOI PMC
Angeli F., Spanevello A., Reboldi G., Visca D., Verdecchia P. SARS-CoV-2 vaccines: Lights and shadows. Eur. J. Intern. Med. 2021;88:1–8. doi: 10.1016/j.ejim.2021.04.019. PubMed DOI PMC
Hurt A.C., Wheatley A.K. Neutralizing Antibody Therapeutics for COVID-19. Viruses. 2021;13:628. doi: 10.3390/v13040628. PubMed DOI PMC
Kifle Z.D., Ayele A.G., Enyew E.F. Drug Repurposing Approach, Potential Drugs, and Novel Drug Targets for COVID-19 Treatment. J. Environ. Public Health. 2021;2021:6631721. doi: 10.1155/2021/6631721. PubMed DOI PMC
Parenti F., Beretta G., Berti M., Arioli V. Teichomycins, New Antibiotics from Actinoplanes Teichomyceticus Nov. SP. I. Description of the Producer Strain, Fermentation Studies and Biological Properties. J. Antibiot. 1978;31:276–283. doi: 10.7164/antibiotics.31.276. PubMed DOI
Barna J.C.J., Williams D.H., Stone D.J.M., Leung T.W.C., Doddrell D.M. Structure Elucidation of the Teicoplanin Antibiotics. J. Am. Chem. Soc. 1984;106:4895–4902. doi: 10.1021/ja00329a044. DOI
Hunt A.H., Molloy R.M., Occolowitz J.L., Marconi G.G., Debono M. Structure of the Major Glycopeptide of the Teicoplanin Complex. J. Am. Chem. Soc. 1984;106:4891–4895. doi: 10.1021/ja00329a043. DOI
Zanol M., Cometti A., Borghi A., Lancini G.C. Isolation and structure determination of minor components of teicoplanin. Chromatographia. 1988;26:234–236. doi: 10.1007/BF02268158. DOI
Glupczynski Y., Lagast H., van der Auwera P., Thys J.P., Crokaert F., Yourassowsky E., Meunier-Carpentier F., Klastersky J., Kains J.P., Serruys-Schoutens E. Clinical evaluation of teicoplanin for therapy of severe infections caused by gram-positive bacteria. Antimicrob. Agents Chemother. 1986;29:52–57. doi: 10.1128/AAC.29.1.52. PubMed DOI PMC
Zeng D., Debabov D., Hartsell T.L., Cano R.J., Adams S., Schuyler J.A., McMillan R., Pace J.L. Approved glycopeptide antibacterial drugs: Mechanism of action and resistance. Cold Spring Harb. Perspect. Med. 2016;6:a026989. doi: 10.1101/cshperspect.a026989. PubMed DOI PMC
Vimberg V., Gazak R., Szűcs Z., Borbás A., Herczegh P., Cavanagh J.P., Zieglerova L., Závora J., Adámková V., Balikova Novotna G. Fluorescence assay to predict activity of the glycopeptide antibiotics. J. Antibiot. 2019;72:114–117. doi: 10.1038/s41429-018-0120-5. PubMed DOI
Pea F. Teicoplanin and therapeutic drug monitoring: An update for optimal use in different patient populations. J. Infect. Chemother. 2020;26:900–907. doi: 10.1016/j.jiac.2020.06.006. PubMed DOI
Pea F., Brollo L., Viale P., Pavan F., Furlanut M. Teicoplanin therapeutic drug monitoring in critically ill patients: A retrospective study emphasizing the importance of a loading dose. J. Antimicrob. Chemother. 2003;51:971–975. doi: 10.1093/jac/dkg147. PubMed DOI
Tascini C., Gemignani G., Doria R., Biancofiore G., Urbani L., Mosca C., Malacarne P., Papineschi F., Passaglia C., Dal Canto L., et al. Linezolid treatment for Gram-positive infections: A retrospective comparison with teicoplanin. J. Chemother. 2009;21:311–316. doi: 10.1179/joc.2009.21.3.311. PubMed DOI
Brink A.J., Richards G.A., Cummins R.R., Lambson J. Recommendations to achieve rapid therapeutic teicoplanin plasma concentrations in adult hospitalised patients treated for sepsis. Int. J. Antimicrob. Agents. 2008;32:455–458. doi: 10.1016/j.ijantimicag.2008.05.012. PubMed DOI
Bernareggi A., Borgonovi M., Del Favero A., Rosina R., Gavanaghi L. Teicoplanin binding in plasma following administration of increasing intravenous doses to healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. 1991;Spec No 3:256–260. PubMed
Smithers J.A., Kulmala H.K., Thompson G.A., Antony K.K., Lewis E.W., Ruberg S.J., Kenny M.T., Dulworth J.K., Brackman M.A. Pharmacokinetics of teicoplanin upon multiple-dose intravenous administration of 3, 12, and 30 milligrams per kilogram of body weight to healthy male volunteers. Antimicrob. Agents Chemother. 1992;36:115–120. doi: 10.1128/AAC.36.1.115. PubMed DOI PMC
Ueda T., Takesue Y., Nakajima K., Ichiki K., Doita A., Wada Y., Tsuchida T., Takahashi Y., Ishihara M., Ikeuchi H., et al. Enhanced loading regimen of teicoplanin is necessary to achieve therapeutic pharmacokinetics levels for the improvement of clinical outcomes in patients with renal dysfunction. Eur. J. Clin. Microbiol. Infect. Dis. 2016;35:1501–1509. doi: 10.1007/s10096-016-2691-z. PubMed DOI
Rybak M.J., Lerner S.A., Levine D.P., Albrecht L.M., McNeil P.L., Thompson G.A., Kenny M.T., Yuh L. Teicoplanin pharmacokinetics in intravenous drug abusers being treated for bacterial endocarditis. Antimicrob. Agents Chemother. 1991;35:696–700. doi: 10.1128/AAC.35.4.696. PubMed DOI PMC
Bergeron M.G., Saginur R., Desaulniers D., Trottier S., Goldstein W., Foucault P., Lessard C. Concentrations of Teicoplanin in serum and atrial appendages of patients undergoing cardiac surgery. Antimicrob. Agents Chemother. 1990;34:1699–1702. doi: 10.1128/AAC.34.9.1699. PubMed DOI PMC
Mimoz O., Rolland D., Adoun M., Marchand S., Breilh D., Brumpt I., Debaene B., Couet W. Steady-state trough serum and epithelial lining fluid concentrations of teicoplanin 12 mg/kg per day in patients with ventilator-associated pneumonia. Intensive Care Med. 2006;32:775–779. doi: 10.1007/s00134-006-0136-3. PubMed DOI
Yanagihara K., Kaneko Y., Sawai T., Miyazaki Y., Tsukamoto K., Hirakata Y., Tomono K., Kadota J.I., Tashiro T., Murata I., et al. Efficacy of linezolid against methicillin-resistant or vancomycin-insensitive Staphylococcus aureus in a model of hematogenous pulmonary infection. Antimicrob. Agents Chemother. 2002;46:3288–3291. doi: 10.1128/AAC.46.10.3288-3291.2002. PubMed DOI PMC
Luna C.M., Bruno D.A., García-Morato J., Mann K.C., Patrón J.R., Sagardía J., Absi R., Bottino M.G., Marchetti D., Famiglietti A., et al. Effect of linezolid compared with glycopeptides in methicillin-resistant Staphylococcus aureus severe pneumonia in piglets. Chest. 2009;135:1564–1571. doi: 10.1378/chest.08-2169. PubMed DOI
Naruse N., Oka M., Konishi M., Oki T. New antiviral antibiotics, kistamicins a and b ii. structure determination. J. Antibiot. 1993;46:1812–1818. doi: 10.7164/antibiotics.46.1812. PubMed DOI
Naruse N., Tenmyo O., Kobaru S., Hatori M., Tomita K., Hamagishi Y., Oki T. New antiviral antibiotics, kistamicins a and b i. taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiot. 1993;46:1804–1811. doi: 10.7164/antibiotics.46.1804. PubMed DOI
Balzarini J., Pannecouque C., De Clercq E., Pavlov A.Y., Printsevskaya S.S., Miroshnikova O.V., Reznikova M.I., Preobrazhenskaya M.N. Antiretroviral activity of semisynthetic derivatives of glycopeptide antibiotics. J. Med. Chem. 2003;46:2755–2764. doi: 10.1021/jm0300882. PubMed DOI
Wang Y., Cui R., Li G., Gao Q., Yuan S., Altmeyer R., Zou G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antivir. Res. 2016;125:1–7. doi: 10.1016/j.antiviral.2015.11.003. PubMed DOI PMC
Zhou N., Pan T., Zhang J., Li Q., Zhang X., Bai C., Huang F., Peng T., Zhang J., Liu C., et al. Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) J. Biol. Chem. 2016;291:9218–9232. doi: 10.1074/jbc.M116.716100. PubMed DOI PMC
Zhang J., Ma X., Yu F., Liu J., Zou F., Pan T., Zhang H. Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv. 2020 doi: 10.1101/2020.02.05.935387. DOI
Gomes C.P., Fernandes D.E., Casimiro F., da Mata G.F., Passos M.T., Varela P., Mastroianni-Kirsztajn G., Pesquero J.B. Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics. Front. Cell. Infect. Microbiol. 2020;10:589505. doi: 10.3389/fcimb.2020.589505. PubMed DOI PMC
Tripathi P.K., Upadhyay S., Singh M., Raghavendhar S., Bhardwaj M., Sharma P., Patel A.K. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int. J. Biol. Macromol. 2020;164:2622–2631. doi: 10.1016/j.ijbiomac.2020.08.166. PubMed DOI PMC
Jean S.S., Hsueh P.R. Old and re-purposed drugs for the treatment of COVID-19. Expert Rev. Anti-Infect. Ther. 2020;18:843–847. doi: 10.1080/14787210.2020.1771181. PubMed DOI PMC
Baron S.A., Devaux C., Colson P., Raoult D., Rolain J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents. 2020;55:105944. doi: 10.1016/j.ijantimicag.2020.105944. PubMed DOI PMC
Ceccarelli G., Alessandri F., d’Ettorre G., Borrazzo C., Spagnolello O., Oliva A., Ruberto F., Mastroianni C.M., Pugliese F., Venditti M. Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int. J. Antimicrob. Agents. 2020;56:106029. doi: 10.1016/j.ijantimicag.2020.106029. PubMed DOI PMC
Ceccarelli G., Alessandri F., Oliva A., Borrazzo C., Dell’Isola S., Ialungo A.M., Rastrelli E., Pelli M., Raponi G., Turriziani O., et al. The role of teicoplanin in the treatment of SARS-CoV-2 infection: A retrospective study in critically ill COVID-19 patients (Tei-COVID study) J. Med. Virol. 2021;93:4319–4325. doi: 10.1002/jmv.26925. PubMed DOI PMC
Westblade L.F., Simon M.S., Satlin M.J. Bacterial Co-Infections in Coronavirus Disease 2019. Trends Microbiol. 2021;29:930–941. doi: 10.1016/j.tim.2021.03.018. PubMed DOI PMC
Hughes S., Troise O., Donaldson H., Mughal N., Moore L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020;26:1395–1399. doi: 10.1016/j.cmi.2020.06.025. PubMed DOI PMC
Kreitmann L., Monard C., Dauwalder O., Simon M., Argaud L. Early bacterial co-infection in ARDS related to COVID-19. Intensive Care Med. 2020;46:1787–1789. doi: 10.1007/s00134-020-06165-5. PubMed DOI PMC
Lai C., Chen S., Ko W., Hsueh P. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents. 2021;57:106324. doi: 10.1016/j.ijantimicag.2021.106324. PubMed DOI PMC
Butler M.S., Hansford K.A., Blaskovich M.A.T., Halai R., Cooper M.A. Glycopeptide antibiotics: Back to the future. J. Antibiot. 2014;67:631–644. doi: 10.1038/ja.2014.111. PubMed DOI
Blaskovich M.A.T., Hansford K.A., Butler M.S., Jia Z., Mark A.E., Cooper M.A. Developments in Glycopeptide Antibiotics. ACS Infect. Dis. 2018;4:715–735. doi: 10.1021/acsinfecdis.7b00258. PubMed DOI PMC
Vimberg V., Cavanagh J.P., Benada O., Kofroňová O., Hjerde E., Zieglerová L., Balíková Novotná G. Teicoplanin resistance in Staphylococcus haemolyticus is associated with mutations in histidine kinases VraS and WalK. Diagn. Microbiol. Infect. Dis. 2018;90:233–240. doi: 10.1016/j.diagmicrobio.2017.11.007. PubMed DOI
Lee J.Y.H., Monk I.R., Gonçalves da Silva A., Seemann T., Chua K.Y.L., Kearns A., Hill R., Woodford N., Bartels M.D., Strommenger B., et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 2018;3:1175–1185. doi: 10.1038/s41564-018-0230-7. PubMed DOI PMC
Vimberg V., Zieglerova L., Závora J., Šemberová L., Prásilová J., Adámková V., Novotna G.B. Draft genome sequences of three clinical isolates of teicoplanin-resistant Staphylococcus epidermidis from patients without prior exposure to glycopeptide antibiotics. J. Glob. Antimicrob. Resist. 2019;16:251–253. doi: 10.1016/j.jgar.2019.02.005. PubMed DOI
Malabarba A., Goldstein B.P. Origin, structure, and activity in vitro and in vivo of dalbavancin. J. Antimicrob. Chemother. 2005;55:ii15–ii20. doi: 10.1093/jac/dki005. PubMed DOI
Yushchuk O., Andreo-Vidal A., Marcone G.L., Bibb M., Marinelli F., Binda E. New Molecular Tools for Regulation and Improvement of A40926 Glycopeptide Antibiotic Production in Nonomuraea gerenzanensis ATCC 39727. Front. Microbiol. 2020;11:8. doi: 10.3389/fmicb.2020.00008. PubMed DOI PMC
Smith J.R., Roberts K.D., Rybak M.J. Dalbavancin: A Novel Lipoglycopeptide Antibiotic with Extended Activity against Gram-Positive Infections. Infect. Dis. Ther. 2015;4:245–258. doi: 10.1007/s40121-015-0077-7. PubMed DOI PMC
Economou N.J., Nahoum V., Weeks S.D., Grasty K.C., Zentner I.J., Townsend T.M., Bhuiya M.W., Cocklin S., Loll P.J. A carrier protein strategy yields the structure of dalbavancin. J. Am. Chem. Soc. 2012;134:4637–4645. doi: 10.1021/ja208755j. PubMed DOI PMC
Wang G., Yang M.L., Duan Z.L., Liu F.L., Jin L., Long C.B., Zhang M., Tang X.P., Xu L., Li Y.C., et al. Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Res. 2021;31:17–24. doi: 10.1038/s41422-020-00450-0. PubMed DOI PMC
Rappo U., Dunne M.W., Puttagunta S., Baldassarre J.S., Su S., Desai-Krieger D., Inoue M. Epithelial lining fluid and plasma concentrations of dalbavancin in healthy adults after a single 1,500-milligram infusion. Antimicrob. Agents Chemother. 2019;63:e01024-19. doi: 10.1128/AAC.01024-19. PubMed DOI PMC
Hoffmann M., Jin Y., Pöhlmann S. Dalbavancin: Novel candidate for COVID-19 treatment. Cell Res. 2021;31:243–244. doi: 10.1038/s41422-020-00459-5. PubMed DOI PMC
Szűcs Z., Kelemen V., Le Thai S., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., et al. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur. J. Med. Chem. 2018;157:1017–1030. doi: 10.1016/j.ejmech.2018.08.058. PubMed DOI PMC
Bereczki I., Csávás M., Szűcs Z., Rőth E., Batta G., Ostorházi E., Naesens L., Borbás A., Herczegh P. Synthesis of Antiviral Perfluoroalkyl Derivatives of Teicoplanin and Vancomycin. ChemMedChem. 2020;15:1661–1671. doi: 10.1002/cmdc.202000260. PubMed DOI PMC