Low temperature 2D GaN growth on Si(111) 7 × 7 assisted by hyperthermal nitrogen ions

. 2022 Aug 23 ; 4 (17) : 3549-3556. [epub] 20220719

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36134341

As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level. We propose a new way of fabrication of 2D GaN on the Si(111) 7 × 7 surface using post-nitridation of Ga droplets by hyperthermal (E = 50 eV) nitrogen ions at low substrate temperatures (T < 220 °C). The deposition of Ga droplets and their post-nitridation are carried out using an effusion cell and a special atom/ion beam source developed by our group, respectively. This low-temperature droplet epitaxy (LTDE) approach provides well-defined ultra-high vacuum growth conditions during the whole fabrication process resulting in unique 2D GaN nanostructures. A sharp interface between the GaN nanostructures and the silicon substrate together with a suitable elemental composition of nanostructures was confirmed by TEM. In addition, SEM, X-ray photoelectron spectroscopy (XPS), AFM and Auger microanalysis were successful in enabling a detailed characterization of the fabricated GaN nanostructures.

Zobrazit více v PubMed

Sanders N. Bayerl D. Shi G. Mengle K. A. Kioupakis E. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles. Nano Lett. 2017;17(12):7345–7349. doi: 10.1021/acs.nanolett.7b03003. PubMed DOI

Feng C. Qin H. Yang D. Zhang G. First-principles investigation of the adsorption behaviors of CH2O on BN, AlN, GaN, InN, BP, and P monolayers. Materials. 2019;12(4):676. doi: 10.3390/ma12040676. PubMed DOI PMC

Pashartis C. Rubel O. Alloying strategy for two-dimensional GaN optical emitters. Phys. Rev. B. 2017;96(15):1–6. doi: 10.1103/PhysRevB.96.155209. DOI

Pimputkar S. Speck J. S. Denbaars S. P. Nakamura S. Prospects for LED lighting. Nat. Photonics. 2009;3(4):180–182. doi: 10.1038/nphoton.2009.32. DOI

Chhowalla M. Jena D. Zhang H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016;1(16052):1–15.

Hao Q. Zhao H. Xiao Y. A hybrid simulation technique for electrothermal studies of two-dimensional GaN-on-SiC high electron mobility transistors. J. Appl. Phys. 2017;121(20):204501. doi: 10.1063/1.4983761. DOI

Zhang X. Jin L. Dai X. Chen G. Liu G. Two-Dimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries. ACS Appl. Mater. Interfaces. 2018;10(45):38978–38984. doi: 10.1021/acsami.8b15139. PubMed DOI

Hussain F. et al., Enhanced ferromagnetic properties of Cu doped two-dimensional GaN monolayer. Int. J. Mod. Phys. C. 2015;26(1):1–8. doi: 10.1142/S0129183115500096. DOI

Alaal N. Roqan I. S. Tuning the Electronic Properties of Hexagonal Two-Dimensional GaN Monolayers via Doping for Enhanced Optoelectronic Applications. ACS Appl. Nano Mater. 2019;2(1):202–213. doi: 10.1021/acsanm.8b01852. DOI

González R. López-Pérez W. González-García Á. Moreno-Armenta M. G. González-Hernández R. Vacancy charged defects in two-dimensional GaN. Appl. Surf. Sci. 2018;433:1049–1055. doi: 10.1016/j.apsusc.2017.10.136. DOI

Tong L. et al., Anisotropic carrier mobility in buckled two-dimensional GaN. Phys. Chem. Chem. Phys. 2017;19(34):23492–23496. doi: 10.1039/C7CP04117A. PubMed DOI

Al Balushi Z. Y. et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016;15(11):1166–1171. doi: 10.1038/nmat4742. PubMed DOI

Wang W. Li Y. Zheng Y. Li X. Huang L. Li G. Lattice Structure and Bandgap Control of 2D GaN Grown on Graphene/Si Heterostructures. Small. 2019;15(14):1–8. PubMed

Chen Y. et al., Growth of 2D GaN Single Crystals on Liquid Metals. J. Am. Chem. Soc. 2018;140(48):16392–16395. doi: 10.1021/jacs.8b08351. PubMed DOI

Koguchi N. Ishige K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and as molecular beams. Jpn. J. Appl. Phys., Part 1. 1993;32(5):2052–2058. doi: 10.1143/JJAP.32.2052. DOI

Stangl J. Holý V. Bauer G. Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 2004;76(3):725–783. doi: 10.1103/RevModPhys.76.725. DOI

Bietti S. Somaschini C. Sanguinetti S. Crystallization kinetics of Ga metallic nano-droplets under As flux. Nanotechnology. 2013;24(20):205603. doi: 10.1088/0957-4484/24/20/205603. PubMed DOI

Mach J. et al., An ultra-low energy (30-200eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum. Rev. Sci. Instrum. 2011;82(8):083302. doi: 10.1063/1.3622749. PubMed DOI

Mach J. et al., Optimization of ion-atomic beam source for deposition of GaN ultrathin films. Rev. Sci. Instrum. 2014;85(8):083302. doi: 10.1063/1.4892800. PubMed DOI

Gerlach J. W. Ivanov T. Neumann L. Höche T. Hirsch D. Rauschenbach B. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets. J. Appl. Phys. 2012;111(11):113521. doi: 10.1063/1.4728166. DOI

Mach J. et al., Low temperature selective growth of GaN single crystals on pre-patterned Si substrates. Appl. Surf. Sci. 2019;497:143705. doi: 10.1016/j.apsusc.2019.143705. DOI

Kolíbal M. Čechal T. Brandejsová E. Čechal J. Šikola T. Self-limiting cyclic growth of gallium droplets on Si(111) Nanotechnology. 2008;19(47):475606. doi: 10.1088/0957-4484/19/47/475606. PubMed DOI

Khoury M. Tottereau O. Feuillet G. Vennéguès P. Zúñiga-Pérez J. Evolution and prevention of meltback etching: case study of semipolar GaN growth on patterned silicon substrates. J. Appl. Phys. 2017;122(10):1–7. doi: 10.1063/1.5001914. DOI

Van de Walle C. G. Effects of impurities on the lattice parameters of GaN. Phys. Rev. B: Condens. Matter Mater. Phys. 2003;68(16):1–5. doi: 10.1103/PhysRevB.68.165209. DOI

Gao Y. Okada S. Energetics and electronic structures of thin films and heterostructures of a hexagonal GaN sheet. Jpn. J. Appl. Phys. 2017;56(6):065201. doi: 10.7567/JJAP.56.065201. DOI

Onen A. Kecik D. Durgun E. Ciraci S. GaN: from three- to two-dimensional single-layer crystal and its multilayer van der Waals solids. Phys. Rev. B. 2016;93(8):1–11. doi: 10.1103/PhysRevB.93.085431. DOI

Onen A. Kecik D. Durgun E. Ciraci S. Onset of vertical bonds in new GaN multilayers: beyond van der Waals solids. Nanoscale. 2018;10(46):21842–21850. doi: 10.1039/C8NR05626A. PubMed DOI

Leszczynski M. et al., Lattice parameters of gallium nitride. Appl. Phys. Lett. 1996;69(1):73–75. doi: 10.1063/1.118123. DOI

Darakchieva V. Paskov P. P. Paskova T. Valcheva E. Monemar B. Heuken M. Lattice parameters of GaN layers grown on a-plane sapphire: effect of in-plane strain anisotropy. Appl. Phys. Lett. 2003;82(5):703–705. doi: 10.1063/1.1542931. DOI

Yelgel C. First-principles modeling of GaN/MoSe2 van der Waals heterobilayer. Turk. J. Phys. 2017;41(5):463–468. doi: 10.3906/fiz-1704-24. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...