Multiparametric Flow Cytometry-Based Immunophenotyping of Mouse Liver Immune Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
OP RDE Project
none
Gilead Sciences, Inc.
PubMed
36136816
PubMed Central
PMC9498390
DOI
10.3390/mps5050070
PII: mps5050070
Knihovny.cz E-zdroje
- Klíčová slova
- PBS-based liver perfusion, flow cytometry, immunophenotyping, mouse liver, non-parenchymal cells,
- Publikační typ
- časopisecké články MeSH
The liver is a complex organ that governs many types of metabolisms, including energy metabolism and other cellular processes. The liver also plays a crucial role in important functions in immunity, and the activity of liver tissue-associated immunity affects the outcome of many liver pathologies. A thorough characterization of the liver immune microenvironment may contribute to a better understanding of immune signaling, the mechanisms of specific immune responses, and even to improved predictions about therapy outcomes. In this paper, we present an optimized, simple, and rapid protocol to characterize the liver-associated immune cell milieu. We believe that the most suitable technique for obtaining a complex immune cell suspension and for removing contaminating blood cells is to perform mouse liver perfusion, using only phosphate buffer saline. Combining an enzymatic digestion and a mechanical dissociation of liver tissue, followed by cell purification, improves downstream applications. This combination is an essential prerequisite for immune cell determination and characterization. We then demonstrate a flow cytometry-based multiparametric immunophenotyping along with a gating strategy to detect and quantify liver endothelial cells, T cells (helper and cytotoxic), B cells, NK cells, NKT cells, neutrophils, monocytes (subsets included), dendritic cells (subsets included), macrophages and Kupffer cells.
Zobrazit více v PubMed
Bogdanos D.P., Gao B., Gershwin M.E. Liver Immunology. Compr. Physiol. 2013;3:567–598. doi: 10.1002/cphy.c120011. PubMed DOI PMC
Heymann F., Tacke F. Immunology in the Liver—From Homeostasis to Disease. Nat. Rev. Gastroenterol. Hepatol. 2016;13:88–110. doi: 10.1038/nrgastro.2015.200. PubMed DOI
Freitas-Lopes M.A., Mafra K., David B.A., Carvalho-Gontijo R., Menezes G.B. Differential Location and Distribution of Hepatic Immune Cells. Cells. 2017;6:48. doi: 10.3390/cells6040048. PubMed DOI PMC
Blom K.G., Qazi M.R., Matos J.B.N., Nelson B.D., DePierre J.W., Abedi-Valugerdi M. Isolation of Murine Intrahepatic Immune Cells Employing a Modified Procedure for Mechanical Disruption and Functional Characterization of the B, T and Natural Killer T Cells Obtained. Clin. Exp. Immunol. 2009;155:320–329. doi: 10.1111/j.1365-2249.2008.03815.x. PubMed DOI PMC
Tacke F., Zimmermann H.W. Macrophage Heterogeneity in Liver Injury and Fibrosis. J. Hepatol. 2014;60:1090–1096. doi: 10.1016/j.jhep.2013.12.025. PubMed DOI
Klugewitz K., Adams D.H., Emoto M., Eulenburg K., Hamann A. The Composition of Intrahepatic Lymphocytes: Shaped by Selective Recruitment? Trends Immunol. 2004;25:590–594. doi: 10.1016/j.it.2004.09.006. PubMed DOI
Lian Z.-X., Li L. The Liver as a Lymphoid Organ. In: Gerswin M.E., Vierling J.M., Tanaka A., Manns M.P., editors. Liver Immunology. 3rd ed. Springer International Publishing; Cham, Switzerland: 2020. pp. 17–33.
Kuipery A., Gehring A.J., Isogawa M. Mechanisms of HBV Immune Evasion. Antivir. Res. 2020;179:104816. doi: 10.1016/j.antiviral.2020.104816. PubMed DOI
You Q., Cheng L., Kedl R.M., Ju C. Mechanism of T Cell Tolerance Induction by Murine Hepatic Kupffer Cells. Hepatology. 2008;48:978–990. doi: 10.1002/hep.22395. PubMed DOI PMC
Diehl L., Schurich A., Grochtmann R., Hegenbarth S., Chen L., Knolle P.A. Tolerogenic Maturation of Liver Sinusoidal Endothelial Cells Promotes B7-Homolog 1-Dependent CD8+ T Cell Tolerance. Hepatology. 2008;47:296–305. doi: 10.1002/hep.21965. PubMed DOI
Xu L., Yin W., Sun R., Wei H., Tian Z. Kupffer Cell-Derived IL-10 Plays a Key Role in Maintaining Humoral Immune Tolerance in Hepatitis B Virus-Persistent Mice. Hepatology. 2014;59:443–452. doi: 10.1002/hep.26668. PubMed DOI
Zhou J., Peng H., Li K., Qu K., Wang B., Wu Y., Ye L., Dong Z., Wei H., Sun R., et al. Liver-Resident NK Cells Control Antiviral Activity of Hepatic T Cells via the PD-1-PD-L1 Axis. Immunity. 2019;50:403–417.e4. doi: 10.1016/j.immuni.2018.12.024. PubMed DOI
Zheng M., Tian Z. Liver-Mediated Adaptive Immune Tolerance. Front. Immunol. 2019;10:2525. doi: 10.3389/fimmu.2019.02525. PubMed DOI PMC
Wu L., Peng W.-H., Wu H.-L., Miaw S.-C., Yeh S.-H., Yang H.-C., Liao P.-H., Lin J.-S., Chen Y., Hong Y.-T., et al. Lymphocyte Antigen 6 Complex, Locus C+ Monocytes and Kupffer Cells Orchestrate Liver Immune Responses against Hepatitis B Virus in Mice. Hepatology. 2019;69:2364–2380. doi: 10.1002/hep.30510. PubMed DOI
David B.A., Rubino S., Moreira T.G., Freitas-Lopes M.A., Araújo A.M., Paul N.E., Rezende R.M., Menezes G.B. Isolation and High-Dimensional Phenotyping of Gastrointestinal Immune Cells. Immunology. 2017;151:56–70. doi: 10.1111/imm.12706. PubMed DOI PMC
Fang X., Du P., Liu Y., Tang J. Efficient Isolation of Mouse Liver NKT Cells by Perfusion. PLoS ONE. 2010;5:e10288. doi: 10.1371/journal.pone.0010288. PubMed DOI PMC
Finlon J.M., Burchill M.A., Tamburini B.A.J. Digestion of the Murine Liver for a Flow Cytometric Analysis of Lymphatic Endothelial Cells. J. Vis. Exp. 2019;143:e58621. doi: 10.3791/58621. PubMed DOI PMC
Li P., Li J., Li M., Gong J., He K. An Efficient Method to Isolate and Culture Mouse Kupffer Cells. Immunol. Lett. 2014;158:52–56. doi: 10.1016/j.imlet.2013.12.002. PubMed DOI
Lynch R.W., Hawley C.A., Pellicoro A., Bain C.C., Iredale J.P., Jenkins S.J. An Efficient Method to Isolate Kupffer Cells Eliminating Endothelial Cell Contamination and Selective Bias. J. Leukoc. Biol. 2018;104:579–586. doi: 10.1002/JLB.1TA0517-169R. PubMed DOI PMC
Shi W., Wang Y., Zhang C., Jin H., Zeng Z., Wei L., Tian Y., Zhang D., Sun G. Isolation and Purification of Immune Cells from the Liver. Int. Immunopharmacol. 2020;85:106632. doi: 10.1016/j.intimp.2020.106632. PubMed DOI
Mohar I., Brempelis K.J., Murray S.A., Ebrahimkhani M.R., Crispe I.N. Isolation of Non-Parenchymal Cells from the Mouse Liver. In: Vaughan A., editor. Malaria Vaccines. Methods in Molecular Biology. Volume 1325. Humana Press; New York, NY, USA: 2015. pp. 3–17. PubMed
Cabral F., Miller C.M., Kudrna K.M., Hass B.E., Daubendiek J.G., Kellar B.M., Harris E.N. Purification of Hepatocytes and Sinusoidal Endothelial Cells from Mouse Liver Perfusion. J. Vis. Exp. 2018;132:56993. doi: 10.3791/56993. PubMed DOI PMC
Aparicio-Vergara M., Tencerova M., Morgantini C., Barreby E., Aouadi M. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver. In: Borel F., Mueller C., editors. Alpha-1 Antitrypsin Deficiency. Methods in Molecular Biology. Volume 1639. Humana Press; New York, NY, USA: 2017. pp. 161–171. PubMed
Sulen A. Liver Macrophage Isolation by Flow Cytometry Sorting. In: Aouadi M., Azzimato V., editors. Kupffer Cells. Volume 2164. Humana Press; New York, NY, USA: 2020. pp. 15–20. PubMed
Wei C., Ni C., Song T., Liu Y., Yang X., Zheng Z., Jia Y., Yuan Y., Guan K., Xu Y., et al. The Hepatitis B Virus X Protein Disrupts Innate Immunity by Downregulating Mitochondrial Antiviral Signaling Protein. J. Immunol. 2010;185:1158–1168. doi: 10.4049/jimmunol.0903874. PubMed DOI
Gondois-Rey F., Granjeaud S., Kieu S.L.T., Herrera D., Hirsch I., Olive D. Multiparametric Cytometry for Exploration of Complex Cellular Dynamics. Cytom. Part A. 2012;81:332–342. doi: 10.1002/cyto.a.22016. PubMed DOI
Ferrer-Font L., Pellefigues C., Mayer J.U., Small S.J., Jaimes M.C., Price K.M. Panel Design and Optimization for High-Dimensional Immunophenotyping Assays Using Spectral Flow Cytometry. Curr. Protoc. Cytom. 2020;92:e70. doi: 10.1002/cpcy.70. PubMed DOI
Giladi A., Paul F., Herzog Y., Lubling Y., Weiner A., Yofe I., Jaitin D., Cabezas-Wallscheid N., Dress R.J., Ginhoux F., et al. Single-Cell Characterization of Haematopoietic Progenitors and Their Trajectories in Homeostasis and Perturbed Haematopoiesis. Nat. Cell Biol. 2018;20:836–846. doi: 10.1038/s41556-018-0121-4. PubMed DOI
Jaitin D.A., Kenigsberg E., Keren-Shaul H., Elefant N., Paul F., Zaretsky I., Mildner A., Cohen N., Jung S., Tanay A., et al. Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science. 2014;343:776–779. doi: 10.1126/science.1247651. PubMed DOI PMC
Miltenyi Biotec Liver Dissociation Kit Mouse Protocol. [(accessed on 17 February 2021)]. Available online: https://www.miltenyibiotec.com/US-en/products/liver-dissociation-kit-mouse.html?countryRedirected=1#gref.
Choi W.-M., Eun H.S., Lee Y.-S., Kim S.J., Kim M.-H., Lee J.-H., Shim Y.-R., Kim H.-H., Kim Y.E., Yi H.-S., et al. Experimental Applications of in Situ Liver Perfusion Machinery for the Study of Liver Disease. Mol. Cells. 2019;42:45–55. doi: 10.14348/molcells.2018.0330. PubMed DOI PMC
Rogers A.B. Stress of Strains: Inbred Mice in Liver Research. Gene Expr. 2018;19:61–67. doi: 10.3727/105221618X15337408678723. PubMed DOI PMC
Sellers R.S., Clifford C.B., Treuting P.M., Brayton C. Immunological Variation between Inbred Laboratory Mouse Strains: Points to Consider in Phenotyping Genetically Immunomodified Mice. Vet. Pathol. 2012;49:32–43. doi: 10.1177/0300985811429314. PubMed DOI
Medina-Montano C., Cacicedo M.L., Svensson M., Limeres M.J., Zeyn Y., Chaves-Giraldo J.E., Röhrig N., Grabbe S., Gehring S., Bros M. Enrichment Methods for Murine Liver Non-Parenchymal Cells Differentially Affect Their Immunophenotype and Responsiveness towards Stimulation. Int. J. Mol. Sci. 2022;23:6543. doi: 10.3390/ijms23126543. PubMed DOI PMC
Canè S., Ugel S., Trovato R., Marigo I., De Sanctis F., Sartoris S., Bronte V. The Endless Saga of Monocyte Diversity. Front. Immunol. 2019;10:1786. doi: 10.3389/fimmu.2019.01786. PubMed DOI PMC
Lee P.Y., Wang J.-X., Parisini E., Dascher C.C., Nigrovic P.A. Ly6 Family Proteins in Neutrophil Biology. J. Leukoc. Biol. 2013;94:585–594. doi: 10.1189/jlb.0113014. PubMed DOI
Deniset J.F., Kubes P. Neutrophil Heterogeneity: Bona Fide Subsets or Polarization States? J. Leukoc. Biol. 2018;103:829–838. doi: 10.1002/JLB.3RI0917-361R. PubMed DOI
Wang C., Liu X., Li Z., Chai Y., Jiang Y., Wang Q., Ji Y., Zhu Z., Wan Y., Yuan Z., et al. CD8+NKT-like Cells Regulate the Immune Response by Killing Antigen-Bearing DCs. Sci. Rep. 2015;5:14124. doi: 10.1038/srep14124. PubMed DOI PMC
Li Z., Wu Y., Wang C., Zhang M. Mouse CD8+NKT-like Cells Exert Dual Cytotoxicity against Mouse Tumor Cells and Myeloid-Derived Suppressor Cells. Cancer Immunol. Immunother. 2019;68:1303–1315. doi: 10.1007/s00262-019-02363-3. PubMed DOI PMC
Pimkova Polidarova M., Brehova P., Dejmek M., Birkus G., Brazdova A. STING Agonist-Mediated Cytokine Secretion Is Accompanied by Monocyte Apoptosis. ACS Infect. Dis. 2022;8:463–471. doi: 10.1021/acsinfecdis.1c00554. PubMed DOI
Pfeiffer E., Kegel V., Zeilinger K., Hengstler J.G., Nüssler A.K., Seehofer D., Damm G. Featured Article: Isolation, Characterization, and Cultivation of Human Hepatocytes and Non-Parenchymal Liver Cells. Exp. Biol. Med. 2015;240:645–656. doi: 10.1177/1535370214558025. PubMed DOI PMC