Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds

. 2022 Sep 19 ; 11 (9) : . [epub] 20220919

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36140051

Grantová podpora
QK 1910438 Ministry of Agriculture
QK 21020304 Ministry of Agriculture

Odkazy

PubMed 36140051
PubMed Central PMC9495979
DOI 10.3390/antibiotics11091273
PII: antibiotics11091273
Knihovny.cz E-zdroje

The aim of this study was to monitor the effect of Bifidobacterium bifidum (BB) and the combination of Lactobacillus sporogenes, Enterococcus faecium, and Bifidobacterium bifidum (LEB) on the health status and weight gain of calves, and the utilisation of nitrogenous substances. The experiment was performed in the period from April 2020 to September 2020. A total of 90 Holstein heifers, which were one to 56 days old, were used as experimental animals. Differences in live weight gain were significant if we compared the LEB vs. BB group and the LEB vs. C, the control group (86.23 ± 5.49 kg vs. 84.72 ± 6.22 kg, p < 0.05; 86.23 ± 5.49 kg vs. 82.86 ± 5.35 kg, p < 0.01). Considering the live weight gain, group BB was heavier than group C only (84.72 ± 6.22 kg vs. 82.86 ± 5.35 kg, p < 0.05). An effect on reducing the incidence and duration of diarrheal diseases was not demonstrated in this study (p = 0.1957). The administration of feed additives had no statistically significant effect on the amount of N excreted in the feces. The values of hematological and biochemical parameters were unaffected except for the first sampling of urea. Other blood parameters were not affected by the addition of probiotic feed additives. The bacterial populations in the feces 5 days and 56 days after birth were not affected by the inclusion of feed additives.

Zobrazit více v PubMed

Svensson C., Lundborg K., Emanuelson U., Olsson S. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev. Veter.-Med. 2003;58:179–197. doi: 10.1016/S0167-5877(03)00046-1. PubMed DOI

Cho Y.-I., Yoon K.-J. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Veter.-Sci. 2014;15:1–17. doi: 10.4142/jvs.2014.15.1.1. PubMed DOI PMC

Smulski S., Turlewicz-Podbielska H., Wylandowska A., Włodarek J. Non-antibiotic possibilities in prevention and treatment of calf diarrhoea. J. Veter.-Res. 2020;64:119–126. doi: 10.2478/jvetres-2020-0002. PubMed DOI PMC

Katsoulos P., Karatzia M., Dedousi A., Camo D., Boscos C. Milk consumption monitoring as a farmer friendly indicator for advanced treatment in limited fed calves with neonatal diarrhoea syndrome. Vet. Med. 2020;65:104–110. doi: 10.17221/57/2019-VETMED. DOI

Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66. PubMed DOI

Simon O., Jadamus A., Vahjen W. Probiotic feed additives-effectiveness and expected modes of action. J. Anim. Feed Sci. 2001;10:51–67. doi: 10.22358/jafs/70012/2001. DOI

Gaggìa F., Mattarelli P., Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010;141:S15–S28. doi: 10.1016/j.ijfoodmicro.2010.02.031. PubMed DOI

Williams B., Verstegen M., Tamminga S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 2001;14:207–228. doi: 10.1079/NRR200127. PubMed DOI

Ohashi Y., Ushida K. Health-beneficial effects of probiotics: Its mode of action. Anim. Sci. J. 2009;80:361–371. doi: 10.1111/j.1740-0929.2009.00645.x. PubMed DOI

Uyeno Y., Shigemori S., Shimosato T. Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 2015;30:126–132. doi: 10.1264/jsme2.ME14176. PubMed DOI PMC

Wollowski I., Rechkemmer G., Pool-Zobel B.L. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr. 2001;73:451s–455s. doi: 10.1093/ajcn/73.2.451s. PubMed DOI

Ülger I. Effects of pre-weaning probiotic treatments on growth performance and biochemical blood parameters of Holstein calves. Indian J. Anim. Res. 2019;53:644–647. doi: 10.18805/ijar.B-816. DOI

Kaur I.P., Chopra K., Saini A. Probiotics: Potential pharmaceutical applications. Eur. J. Pharm. Sci. 2001;15:1–9. doi: 10.1016/S0928-0987(01)00209-3. PubMed DOI

Eisler M.C., Lee M.R.F., Tarlton J.F., Martin G.B., Beddington J., Dungait J.A.J., Greathead H., Liu J., Mathew S., Miller H., et al. Agriculture: Steps to sustainable livestock. Nature. 2014;507:32–34. doi: 10.1038/507032a. PubMed DOI

Reisinger A., Clark H. How much do direct livestock emissions actually contribute to global warming? Glob. Chang. Biol. 2017;24:1749–1761. doi: 10.1111/gcb.13975. PubMed DOI

Hristov A.N., Oh J., Firkins J.L., Dijkstra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C., et al. Special Topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013;91:5045–5069. doi: 10.2527/jas.2013-6583. PubMed DOI

Jeyanathan J., Martin C., Eugène M., Ferlay A., Popova M., Morgavi D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 2019;10:41. doi: 10.1186/s40104-019-0342-9. PubMed DOI PMC

Knapp J.R., Laur G.L., Vadas P.A., Weiss W.P., Tricarico J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014;97:3231–3261. doi: 10.3168/jds.2013-7234. PubMed DOI

Varnava K.G., Ronimus R.S., Sarojini V. A review on comparative mechanistic studies of antimicrobial peptides against archaea. Biotechnol. Bioeng. 2017;114:2457–2473. doi: 10.1002/bit.26387. PubMed DOI

Larson L.L., Owen F.G., Albright J.L., Appleman R.D., Lamb R.C., Muller L.D. Guidelines Toward More Uniformity in Measuring and Reporting Calf Experimental Data. J. Dairy Sci. 1977;60:989–991. doi: 10.3168/jds.S0022-0302(77)83975-1. DOI

Knowles T., Edwards J.E., Bazeley K.J., Brown S.N., Butterworth A., Warriss P.D. Changes in the blood biochemical and haematological profile of neonatal calves with age. Veter. Rec. 2000;147:593–598. doi: 10.1136/vr.147.21.593. PubMed DOI

Bayatkouhsar J., Tahmasebi A.M., Naserian A.A., Mokarram R.R., Valizadeh R. Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 2013;186:1–11. doi: 10.1016/j.anifeedsci.2013.04.015. DOI

Soto L.P., Zbruna M.V., Frizzo L.S., Signorinia M.L., Sequeira G.J., Rosmini M.R. Effects of bacterial inoculants in milk on the performance of intensively reared calves. Anim. Feed Sci. Technol. 2014;189:117–122. doi: 10.1016/j.anifeedsci.2013.12.004. DOI

Frizzo L.S., Soto L.P., Bertozzi E., Zbrun M.V., Signorini M.L., Sequeira G., Armesto R.R., Rosmini M.R. Intestinal populations of Lactobacilli and coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose. Anim. Feed Sci. Technol. 2011;170:12–20. doi: 10.1016/j.anifeedsci.2011.07.016. DOI

Timmerman H.M., Mulder L., Everts H., Van Espen D.C., Van Der Wal E., Klaassen G., Rouwers S.M.G., Hartemink R., Rombouts F.M., Beynen A.C. Health and Growth of Veal Calves Fed Milk Replacers With or Without Probiotics. J. Dairy Sci. 2005;88:2154–2165. doi: 10.3168/jds.S0022-0302(05)72891-5. PubMed DOI

Renaud D.L., Kelton D.F., Weese J.S., Noble C., Duffiel T.F. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. J. Dairy Sci. 2019;102:4498–4505. doi: 10.3168/jds.2018-15793. PubMed DOI

He Z.X., Ferlisi B., Eckert E., Brown H.E., Aguilar A., Steele M.E. Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Anim. Feed Sci. Technol. 2017;226:81–87. doi: 10.1016/j.anifeedsci.2017.02.010. PubMed DOI PMC

Soto L.P., Frizzo L.S., Avataneo E., Zbrun M.V., Bertozzi E., Sequeira G., Signorini M.L., Rosmini M.R. Design of macrocapsules to improve bacterial viability and supplementation with a probiotic for young calves. Anim. Feed Sci. Technol. 2011;165:176–183. doi: 10.1016/j.anifeedsci.2011.03.001. DOI

Martín M.-J., Martín-Sosa S., Alonso J.M., Hueso P. Enterotoxigenic Escherichia coli strains bind bovine milk gangliosides in a ceramide-dependent process. Lipids. 2003;38:761–768. doi: 10.1007/s11745-003-1124-7. PubMed DOI

Nagy B., Fekete P. Enterotoxigenic Escherichia coli in veterinary medicine. Int. J. Med Microbiol. 2005;295:443–454. doi: 10.1016/j.ijmm.2005.07.003. PubMed DOI

Luginbühl A., Reitt K., Metzler A., Kollbrunner M., Corboz L., Deplazes P. Field study of the prevalence and diagnosis of diarrhea-causing agents in the newborn calf in a Swiss veterinary practice area. Schweiz. Arch. Tierheilkd. 2005;147:245–252. doi: 10.1024/0036-7281.147.6.245. PubMed DOI

Barrington G.M., Gay J.M., Evermann J.F. Biosecurity for neonatal gastrointestinal diseases. Veter. Clin. N. Am. Food Anim. Pract. 2002;18:7–34. doi: 10.1016/S0749-0720(02)00005-1. PubMed DOI PMC

Younis E.E., Ahmed A.M., El-Khodery S.A., Osman S.A., El-Naker Y.F. Molecular screening and risk factors of enterotoxigenic Escherichia coli and Salmonella spp. in diarrheic neonatal calves in Egypt. Res. Veter.-Sci. 2009;87:373–379. doi: 10.1016/j.rvsc.2009.04.006. PubMed DOI PMC

Klein D., Alispahic M., Sofka D., Iwersen M., Drillich M., Hilbert F. Prevalence and risk factors for shedding of thermophilic Campylobacter in calves with and without diarrhea in Austrian dairy herds. J. Dairy Sci. 2013;96:1203–1210. doi: 10.3168/jds.2012-5987. PubMed DOI

Besser T.E., LeJeune J.T., Rice D.H., Berg J., Stilborn R.P., Kaya K., Bae W., Hancock D.D. Increasing Prevalence of Campylobacter jejuni in Feedlot Cattle through the Feeding Period. Appl. Environ. Microbiol. 2005;71:5752–5758. doi: 10.1128/AEM.71.10.5752-5758.2005. PubMed DOI PMC

Sato K., Bartlett P.C., Kaneene J.B., Downes F.P. Comparison of Prevalence and Antimicrobial Susceptibilities of Campylobacter spp. Isolates from Organic and Conventional Dairy Herds in Wisconsin. Appl. Environ. Microbiol. 2004;70:1442–1447. doi: 10.1128/AEM.70.3.1442-1447.2004. PubMed DOI PMC

Windeyer M.C., Leslie K.E., Godden S.M., Hodgins D.C., Lissemore K.D., LeBlanc S.J. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014;113:231–240. doi: 10.1016/j.prevetmed.2013.10.019. PubMed DOI

Fecteau G., Smith B.P., George L.W. Septicemia and Meningitis in the Newborn Calf. Veter- Clin. North Am. Food Anim. Pr. 2009;25:195–208. doi: 10.1016/j.cvfa.2008.10.004. PubMed DOI

Godden S. Colostrum Management for Dairy Calves. Vet. Clin. N. Am. Food Anim. Pract. 2008;24:19–39. doi: 10.1016/j.cvfa.2007.10.005. PubMed DOI PMC

Vogels Z., Chuck G., Morton J. Failure of transfer of passive immunity and agammaglobulinaemia in calves in south-west Victorian dairy herds: Prevalence and risk factors. Aust. Veter.-J. 2013;91:150–158. doi: 10.1111/avj.12025. PubMed DOI

Komine M., Massa A., Moon L., Mullaney T. Citrobacter koseri Septicaemia in a Holstein Calf. J. Comp. Pathol. 2014;151:309–313. doi: 10.1016/j.jcpa.2014.07.005. PubMed DOI

Mohri M., Sharifi K., Eidi S. Hematology and serum biochemistry of Holstein dairy calves: Age related changes and comparison with blood composition in adults. Res. Veter.-Sci. 2007;83:30–39. doi: 10.1016/j.rvsc.2006.10.017. PubMed DOI

Greenwood P., Hunt A., Slepetis R., Finnerty K., Alston C., Beermann D., Bell A. Effect of birth weight and postnatal nutrition on neonatal sheep. III. Regulation if energy metabolism. J. Anim. Sci. 2002;129:2850–2861. doi: 10.1530/rep.1.00342. PubMed DOI

Abeni F., Federici C., Speroni M., Petrera F., Pisacane V., Terzano G., Capelletti M., Pirlo G., Aleandri R. Body growth, hematological profile, and clinical biochemistry of heifer calves sired by a bull or its clone. Theriogenology. 2012;78:542–559. doi: 10.1016/j.theriogenology.2012.02.036. PubMed DOI

Ballou M., Cobb C., Hulbert L., Carroll J. Effects of intravenous Escherichia coli dose on the pathophysiological response of colostrum-fed Jersey calves. Veter.-Immunol. Immunopathol. 2011;141:76–83. doi: 10.1016/j.vetimm.2011.02.008. PubMed DOI PMC

Hammon H.M., Schiessler G., Nussbaum A., Blum J.W. Feed Intake Patterns, Growth Performance, and Metabolic and Endocrine Traits in Calves Fed Unlimited Amounts of Colostrum and Milk by Automate, Starting in the Neonatal Period. J. Dairy Sci. 2002;85:3352–3362. doi: 10.3168/jds.S0022-0302(02)74423-8. PubMed DOI

Steinhoff-Wagner J., Görs S., Junghans P., Bruckmaier R.M., Kanitz E., Metges C.C., Hammon H.M. Intestinal Glucose Absorption but Not Endogenous Glucose Production Differs between Colostrum- and Formula-Fed Neonatal Calves. J. Nutr. 2010;141:48–55. doi: 10.3945/jn.110.128652. PubMed DOI

Rauprich A.B.E., Hammon H.M., Blum J.W. Influence of feeding different amounts of first colostrum on metabolic, endocrine, and health status and on growth performance in neonatal calves. J. Anim. Sci. 2000;78:896–908. doi: 10.2527/2000.784896x. PubMed DOI

Hammon H.M., Steinhoff-Wagner J., Flor J., Schönhusen U., Metges C.C. Lactation biology symposium: Role of colostrum and colostrum components on glucose metabolism in neonatal calves. J. Anim. Sci. 2013;91:685–695. doi: 10.2527/jas.2012-5758. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...