Synthesis, Neuroprotective Effect and Physicochemical Studies of Novel Peptide and Nootropic Analogues of Alzheimer Disease Drug
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36145329
PubMed Central
PMC9500833
DOI
10.3390/ph15091108
PII: ph15091108
Knihovny.cz E-zdroje
- Klíčová slova
- glycine, memantine, neuroprotective action, nootropics, solubility,
- Publikační typ
- časopisecké články MeSH
Glutamate is an excitatory neurotransmitter in the nervous system. Excessive glutamate transmission can lead to increased calcium ion expression, related to increased neurotoxicity. Memantine is used for treating patients with Alzheimer's disease (AD) due to its protective action on the neurons against toxicity caused by over activation of N-methyl-D-aspartate receptors. Nootropics, also called "smart drugs", are used for the treatment of cognitive deficits. In this work, we evaluate the neuroprotective action of four memantine analogues of glycine derivatives, including glycyl-glycine, glycyl-glycyl-glycine, sarcosine, dimethylglycine and three conjugates with nootropics, modafinil, piracetam and picamilon. The new structural memantine derivatives improved cell viability against copper-induced neurotoxicity in APPswe cells and glutamate-induced neurotoxicity in SH-SY5Y cells. Among these novel compounds, modafinil-memantine, piracetam-memantine, sarcosine-memantine, dimethylglycine-memantine, and glycyl-glycine-memantine were demonstrated with good EC50 values of the protective effects on APPswe cells, accompanied with moderate amelioration from glutamate-induced neurotoxicity. In conclusion, our study demonstrated that novel structural derivatives of memantine might have the potential to develop promising lead compounds for the treatment of AD. The solubility of memantine analogues with nootropics and memantine analogues with glycine derivatives in buffer solutions at pH 2.0 and pH 7.4 simulating the biological media at 298.15 K was determined and the mutual influence of the structural fragments in the molecules on the solubility behavior was analyzed. The significative correlation equations relating the solubility and biological properties with the structural HYBOT (Hydrogen Bond Thermodynamics) descriptors were derived. These equations would greatly simplify the task of the directed design of the memantine analogues with improved solubility and enhanced bioavailability.
Faculty of Science Charles University Prague 128 43 Prague Czech Republic
G A Krestov Institute of Solution Chemistry Russian Academy of Sciences 153045 Ivanovo Russia
Zobrazit více v PubMed
Czarnecka K., Chuchmacz J., Wójtowicz P., Szymański P. Memantine in neurological disorders—Schizophrenia and depression. J. Mol. Med. 2021;99:327–334. doi: 10.1007/s00109-020-01982-z. PubMed DOI PMC
Prince M., Albanese E., Guerchet M., Prina M. World Alzheimer Report 2014: Dementia and Risk Reduction: An Analysis of Protective and Modifiable Risk Factors. Alzheimer’s Disease International (ADI); London, UK: 2014.
Lane C.A., Hardy J., Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018;25:59–70. doi: 10.1111/ene.13439. PubMed DOI
Witt A., Macdonald N., Kirkpatrick P. Memantine hydrochloride. Nat. Rev. Drug Discov. 2004;3:109–110. doi: 10.1038/nrd1311. PubMed DOI
Altevogt B.M., Davis M., Pankevich D.E., editors. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary. National Academies Press; Washington, DC, USA: 2011. PubMed
Bechtholt-Gompf A.J., Walther H.V., Adams M.A., Carlezon W.A., Öngür D., Cohen B.M. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology. 2010;35:2049–2059. doi: 10.1038/npp.2010.74. PubMed DOI PMC
Kang H.S., Kim J.P. Butenolide derivatives from the fungus Aspergillus terreus and their radical scavenging activity and protective activity against glutamate-induced excitotoxicity. Appl. Biol. Chem. 2019;62:1–5. doi: 10.1186/s13765-019-0451-3. DOI
Atlante A., Calissano P., Bobba A., Giannattasio S., Marra E., Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 2001;497:1–5. doi: 10.1016/S0014-5793(01)02437-1. PubMed DOI
Stankova I., Stoilkova A., Chayrov R., Tsvetanova E., Georgieva A., Alexandrova A. In Vitro Antioxidant Activity of Memantine Derivatives Containing Amino Acids. Pharm. Chem. J. 2020;54:268–272. doi: 10.1007/s11094-020-02189-9. DOI
Bai K., Jiang L., Zhu S., Feng C., Zhao Y., Zhang L., Wang T. Dimethylglycine sodium salt protects against oxidative damage and mitochondrial dysfunction in the small intestines of mice. Int. J. Mol. Med. 2019;43:2199–2211. doi: 10.3892/ijmm.2019.4093. PubMed DOI
Hariganesh K., Prathiba J. Effect of dimethylglycine on gastric ulcers in rats. J. Pharm. Pharmacol. 2000;52:1519–1522. doi: 10.1211/0022357001777568. PubMed DOI
Bai K., Xu W., Zhang J., Kou T., Niu Y., Wan X., Wang T. Assessment of free radical scavenging activity of dimethylglycine sodium salt and its role in providing protection against lipopolysaccharide-induced oxidative stress in mice. PLoS ONE. 2016;11:e0155393. doi: 10.1371/journal.pone.0155393. PubMed DOI PMC
Friesen R.W., Novak E.M., Hasman D., Innis S.M. Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. J. Nutr. 2007;137:2641–2646. doi: 10.1093/jn/137.12.2641. PubMed DOI
Clapes P., Rosa Infante M. Amino acid-based surfactants: Enzymatic synthesis, properties and potential applications. Biocatal. Biotransformation. 2002;20:215–233. doi: 10.1080/10242420290004947. DOI
Curtis D. A possible role for sarcosine in the management of schizophrenia. Br. J. Psychiatry. 2019;215:697–698. doi: 10.1192/bjp.2019.194. PubMed DOI
Chang C.H., Lin C.H., Liu C.Y., Chen S.J., Lane H.Y. Efficacy and cognitive effect of sarcosine (N-methylglycine) in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. J. Psychopharmacol. 2020;34:495–505. doi: 10.1177/0269881120908016. PubMed DOI
Colucci L., Bosco M., Ziello A.R., Rea R., Amenta F., Fasanaro A.M. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: A review. J. Exp. Pharmacol. 2012;4:163. doi: 10.2147/JEP.S35326. PubMed DOI PMC
Wisor J.P. Modafinil as a catecholaminergic agent: Empirical evidence and unanswered questions. Front. Neurol. 2013;4:139. doi: 10.3389/fneur.2013.00139. PubMed DOI PMC
Volkow N.D., Fowler J.S., Logan J., Alexoff D., Zhu W., Telang F., Apelskog-Torres K. Effects of modafinil on dopamine and dopamine transporters in the male human brain: Clinical implications. JAMA. 2009;301:1148–1154. doi: 10.1001/jama.2009.351. PubMed DOI PMC
Abbasi Y., Shabani R., Mousavizadeh K., Soleimani M., Mehdizadeh M. Neuroprotective effect of ethanol and Modafinil on focal cerebral ischemia in rats. Metab. Brain Dis. 2019;34:805–819. doi: 10.1007/s11011-018-0378-0. PubMed DOI
Malykh A.G., Sadaie M.R. Piracetam and piracetam-like drugs. Drugs. 2010;70:287–312. doi: 10.2165/11319230-000000000-00000. PubMed DOI
Fesenko U.A. Piracetam improves children’s memory after general anaesthesia. Anestezjol. Intensywna Ter. 2009;41:16–21. PubMed
Holinski S., Claus B., Alaaraj N., Dohmen P.M., Kirilova K., Neumann K., Konertz W. Cerebroprotective effect of piracetam in patients undergoing coronary bypass burgery. Med. Sci. Monit. 2008;14:PI53–PI57. PubMed
Nickolson V.J., Wolthuis O.L. Effect of the acquisition-enhancing drug ptracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine. Biochem. Pharmacol. 1976;25:2241–2244. doi: 10.1016/0006-2952(76)90004-6. PubMed DOI
Grau M., Montero J.L., Balasch J. Effect of Piracetam on electrocorticogram and local cerebral glucose utilization in the rat. Gen. Pharmacol. Vasc. Syst. 1987;18:205–211. doi: 10.1016/0306-3623(87)90252-7. PubMed DOI
Mirzoian R.S., Gan’shina T.S., Kim G.A., Kurza E.V., Maslennikov D.V., Il’ya N.K., Gorbunov A.A. The translational potential of experimental pharmacology for cerebrovascular disorders. Ann. Clin. Exp. Neurol. 2019;13:34–40.
Mishchenko O., Palagina N. Experimental research of cerebroprotective activity of the new 4-aminobutatanoic acid derivative. EUREKA Health Sci. 2021;3:95–100. doi: 10.21303/2504-5679.2021.001851. DOI
Tabassum N., Rasool S., Malik Z.A., Ahmad F. Natural cognitive enhancers. J. Pharm. Res. 2012;5:153–160.
Rosini M., Simoni E., Caporaso R., Basagni F., Catanzaro M., Abu I.F., Fagiani F., Fusco F., Masuzzo S., Albani D., et al. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem. 2019;180:111–120. doi: 10.1016/j.ejmech.2019.07.011. PubMed DOI
Turcu A., Companys-Alemany J., Phillips M.B., Patel D.S., Griñán-Ferré C., Loza M.I., Brea J.M., Pérez B., Soto D., Sureda F.X., et al. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer’s disease. Eur. J. Med. Chem. 2022;236:114354–114382. doi: 10.1016/j.ejmech.2022.114354. PubMed DOI PMC
Glomme A., März J., Dressman J.B. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. 2005;94:1–16. doi: 10.1002/jps.20212. PubMed DOI
Tencheva A., Liu R., Volkova T.V., Chayrov R., Mitrev Y., Štícha M., Li Y., Jiang H., Li Z., Stankova I., et al. Synthetic analogues of memantine as neuroprotective and influenza viral inhibitors: In vitro and physicochemical studies. Amino Acids. 2020;52:1559–1580. doi: 10.1007/s00726-020-02914-4. PubMed DOI
Knorr R., Trzeciak A., Bannwarth W., Gillessen D. New coupling reagents in peptide chemistry. Tetrahedron Lett. 1989;30:1927–1930. doi: 10.1016/S0040-4039(00)99616-3. DOI
Higuchi T., Connors K. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965;4:117–123.
Zeng L., Jiang H., Ashraf G.M., Liu J., Wang L., Zhao K., Liu M., Li Z., Liu R. Implications of miR-148a-3p/p35/PTEN signaling in tau hyperphosphorylation and autoregulatory feedforward of Akt/CREB in Alzheimerés disease. Mol. Ther. Nucleic Acids. 2021;27:256–275. doi: 10.1016/j.omtn.2021.11.019. PubMed DOI PMC
Raevsky O.A., Grigor’ev V.J., Trepalin S.V. HYBOT Program Package. Registration by Russian State Patent Agency. No. 990090. 1999 February 26;
Surov A.O., Volkova T.V. Solubility/distribution thermodynamics and permeability of two anthelmintics in biologically relevant solvents. J. Mol. Liq. 2022;354:118835–118862. doi: 10.1016/j.molliq.2022.118835. DOI