Synthesis, Neuroprotective Effect and Physicochemical Studies of Novel Peptide and Nootropic Analogues of Alzheimer Disease Drug

. 2022 Sep 05 ; 15 (9) : . [epub] 20220905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36145329

Glutamate is an excitatory neurotransmitter in the nervous system. Excessive glutamate transmission can lead to increased calcium ion expression, related to increased neurotoxicity. Memantine is used for treating patients with Alzheimer's disease (AD) due to its protective action on the neurons against toxicity caused by over activation of N-methyl-D-aspartate receptors. Nootropics, also called "smart drugs", are used for the treatment of cognitive deficits. In this work, we evaluate the neuroprotective action of four memantine analogues of glycine derivatives, including glycyl-glycine, glycyl-glycyl-glycine, sarcosine, dimethylglycine and three conjugates with nootropics, modafinil, piracetam and picamilon. The new structural memantine derivatives improved cell viability against copper-induced neurotoxicity in APPswe cells and glutamate-induced neurotoxicity in SH-SY5Y cells. Among these novel compounds, modafinil-memantine, piracetam-memantine, sarcosine-memantine, dimethylglycine-memantine, and glycyl-glycine-memantine were demonstrated with good EC50 values of the protective effects on APPswe cells, accompanied with moderate amelioration from glutamate-induced neurotoxicity. In conclusion, our study demonstrated that novel structural derivatives of memantine might have the potential to develop promising lead compounds for the treatment of AD. The solubility of memantine analogues with nootropics and memantine analogues with glycine derivatives in buffer solutions at pH 2.0 and pH 7.4 simulating the biological media at 298.15 K was determined and the mutual influence of the structural fragments in the molecules on the solubility behavior was analyzed. The significative correlation equations relating the solubility and biological properties with the structural HYBOT (Hydrogen Bond Thermodynamics) descriptors were derived. These equations would greatly simplify the task of the directed design of the memantine analogues with improved solubility and enhanced bioavailability.

Zobrazit více v PubMed

Czarnecka K., Chuchmacz J., Wójtowicz P., Szymański P. Memantine in neurological disorders—Schizophrenia and depression. J. Mol. Med. 2021;99:327–334. doi: 10.1007/s00109-020-01982-z. PubMed DOI PMC

Prince M., Albanese E., Guerchet M., Prina M. World Alzheimer Report 2014: Dementia and Risk Reduction: An Analysis of Protective and Modifiable Risk Factors. Alzheimer’s Disease International (ADI); London, UK: 2014.

Lane C.A., Hardy J., Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018;25:59–70. doi: 10.1111/ene.13439. PubMed DOI

Witt A., Macdonald N., Kirkpatrick P. Memantine hydrochloride. Nat. Rev. Drug Discov. 2004;3:109–110. doi: 10.1038/nrd1311. PubMed DOI

Altevogt B.M., Davis M., Pankevich D.E., editors. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary. National Academies Press; Washington, DC, USA: 2011. PubMed

Bechtholt-Gompf A.J., Walther H.V., Adams M.A., Carlezon W.A., Öngür D., Cohen B.M. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology. 2010;35:2049–2059. doi: 10.1038/npp.2010.74. PubMed DOI PMC

Kang H.S., Kim J.P. Butenolide derivatives from the fungus Aspergillus terreus and their radical scavenging activity and protective activity against glutamate-induced excitotoxicity. Appl. Biol. Chem. 2019;62:1–5. doi: 10.1186/s13765-019-0451-3. DOI

Atlante A., Calissano P., Bobba A., Giannattasio S., Marra E., Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 2001;497:1–5. doi: 10.1016/S0014-5793(01)02437-1. PubMed DOI

Stankova I., Stoilkova A., Chayrov R., Tsvetanova E., Georgieva A., Alexandrova A. In Vitro Antioxidant Activity of Memantine Derivatives Containing Amino Acids. Pharm. Chem. J. 2020;54:268–272. doi: 10.1007/s11094-020-02189-9. DOI

Bai K., Jiang L., Zhu S., Feng C., Zhao Y., Zhang L., Wang T. Dimethylglycine sodium salt protects against oxidative damage and mitochondrial dysfunction in the small intestines of mice. Int. J. Mol. Med. 2019;43:2199–2211. doi: 10.3892/ijmm.2019.4093. PubMed DOI

Hariganesh K., Prathiba J. Effect of dimethylglycine on gastric ulcers in rats. J. Pharm. Pharmacol. 2000;52:1519–1522. doi: 10.1211/0022357001777568. PubMed DOI

Bai K., Xu W., Zhang J., Kou T., Niu Y., Wan X., Wang T. Assessment of free radical scavenging activity of dimethylglycine sodium salt and its role in providing protection against lipopolysaccharide-induced oxidative stress in mice. PLoS ONE. 2016;11:e0155393. doi: 10.1371/journal.pone.0155393. PubMed DOI PMC

Friesen R.W., Novak E.M., Hasman D., Innis S.M. Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. J. Nutr. 2007;137:2641–2646. doi: 10.1093/jn/137.12.2641. PubMed DOI

Clapes P., Rosa Infante M. Amino acid-based surfactants: Enzymatic synthesis, properties and potential applications. Biocatal. Biotransformation. 2002;20:215–233. doi: 10.1080/10242420290004947. DOI

Curtis D. A possible role for sarcosine in the management of schizophrenia. Br. J. Psychiatry. 2019;215:697–698. doi: 10.1192/bjp.2019.194. PubMed DOI

Chang C.H., Lin C.H., Liu C.Y., Chen S.J., Lane H.Y. Efficacy and cognitive effect of sarcosine (N-methylglycine) in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. J. Psychopharmacol. 2020;34:495–505. doi: 10.1177/0269881120908016. PubMed DOI

Colucci L., Bosco M., Ziello A.R., Rea R., Amenta F., Fasanaro A.M. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: A review. J. Exp. Pharmacol. 2012;4:163. doi: 10.2147/JEP.S35326. PubMed DOI PMC

Wisor J.P. Modafinil as a catecholaminergic agent: Empirical evidence and unanswered questions. Front. Neurol. 2013;4:139. doi: 10.3389/fneur.2013.00139. PubMed DOI PMC

Volkow N.D., Fowler J.S., Logan J., Alexoff D., Zhu W., Telang F., Apelskog-Torres K. Effects of modafinil on dopamine and dopamine transporters in the male human brain: Clinical implications. JAMA. 2009;301:1148–1154. doi: 10.1001/jama.2009.351. PubMed DOI PMC

Abbasi Y., Shabani R., Mousavizadeh K., Soleimani M., Mehdizadeh M. Neuroprotective effect of ethanol and Modafinil on focal cerebral ischemia in rats. Metab. Brain Dis. 2019;34:805–819. doi: 10.1007/s11011-018-0378-0. PubMed DOI

Malykh A.G., Sadaie M.R. Piracetam and piracetam-like drugs. Drugs. 2010;70:287–312. doi: 10.2165/11319230-000000000-00000. PubMed DOI

Fesenko U.A. Piracetam improves children’s memory after general anaesthesia. Anestezjol. Intensywna Ter. 2009;41:16–21. PubMed

Holinski S., Claus B., Alaaraj N., Dohmen P.M., Kirilova K., Neumann K., Konertz W. Cerebroprotective effect of piracetam in patients undergoing coronary bypass burgery. Med. Sci. Monit. 2008;14:PI53–PI57. PubMed

Nickolson V.J., Wolthuis O.L. Effect of the acquisition-enhancing drug ptracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine. Biochem. Pharmacol. 1976;25:2241–2244. doi: 10.1016/0006-2952(76)90004-6. PubMed DOI

Grau M., Montero J.L., Balasch J. Effect of Piracetam on electrocorticogram and local cerebral glucose utilization in the rat. Gen. Pharmacol. Vasc. Syst. 1987;18:205–211. doi: 10.1016/0306-3623(87)90252-7. PubMed DOI

Mirzoian R.S., Gan’shina T.S., Kim G.A., Kurza E.V., Maslennikov D.V., Il’ya N.K., Gorbunov A.A. The translational potential of experimental pharmacology for cerebrovascular disorders. Ann. Clin. Exp. Neurol. 2019;13:34–40.

Mishchenko O., Palagina N. Experimental research of cerebroprotective activity of the new 4-aminobutatanoic acid derivative. EUREKA Health Sci. 2021;3:95–100. doi: 10.21303/2504-5679.2021.001851. DOI

Tabassum N., Rasool S., Malik Z.A., Ahmad F. Natural cognitive enhancers. J. Pharm. Res. 2012;5:153–160.

Rosini M., Simoni E., Caporaso R., Basagni F., Catanzaro M., Abu I.F., Fagiani F., Fusco F., Masuzzo S., Albani D., et al. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem. 2019;180:111–120. doi: 10.1016/j.ejmech.2019.07.011. PubMed DOI

Turcu A., Companys-Alemany J., Phillips M.B., Patel D.S., Griñán-Ferré C., Loza M.I., Brea J.M., Pérez B., Soto D., Sureda F.X., et al. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer’s disease. Eur. J. Med. Chem. 2022;236:114354–114382. doi: 10.1016/j.ejmech.2022.114354. PubMed DOI PMC

Glomme A., März J., Dressman J.B. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. 2005;94:1–16. doi: 10.1002/jps.20212. PubMed DOI

Tencheva A., Liu R., Volkova T.V., Chayrov R., Mitrev Y., Štícha M., Li Y., Jiang H., Li Z., Stankova I., et al. Synthetic analogues of memantine as neuroprotective and influenza viral inhibitors: In vitro and physicochemical studies. Amino Acids. 2020;52:1559–1580. doi: 10.1007/s00726-020-02914-4. PubMed DOI

Knorr R., Trzeciak A., Bannwarth W., Gillessen D. New coupling reagents in peptide chemistry. Tetrahedron Lett. 1989;30:1927–1930. doi: 10.1016/S0040-4039(00)99616-3. DOI

Higuchi T., Connors K. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965;4:117–123.

Zeng L., Jiang H., Ashraf G.M., Liu J., Wang L., Zhao K., Liu M., Li Z., Liu R. Implications of miR-148a-3p/p35/PTEN signaling in tau hyperphosphorylation and autoregulatory feedforward of Akt/CREB in Alzheimerés disease. Mol. Ther. Nucleic Acids. 2021;27:256–275. doi: 10.1016/j.omtn.2021.11.019. PubMed DOI PMC

Raevsky O.A., Grigor’ev V.J., Trepalin S.V. HYBOT Program Package. Registration by Russian State Patent Agency. No. 990090. 1999 February 26;

Surov A.O., Volkova T.V. Solubility/distribution thermodynamics and permeability of two anthelmintics in biologically relevant solvents. J. Mol. Liq. 2022;354:118835–118862. doi: 10.1016/j.molliq.2022.118835. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...