Catastrophic growth of totally molten magma chambers in months to years

. 2022 Sep 23 ; 8 (38) : eabq0394. [epub] 20220923

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36149966

The vertical growth rate of basaltic magma chambers remains largely unknown with available estimates being highly uncertain. Here, we propose a novel approach to address this issue using the classical Skaergaard intrusion that started crystallizing from all margins inward only after it had been completely filled with magma. Our numerical simulations indicate that to keep the growing Skaergaard magma chamber completely molten, the vertical growth rate must have been on the order of several hundreds to a few thousands of meters per year, corresponding to volumetric flow rates of tens to hundreds of cubic kilometers per year. These rates are several orders of magnitude higher than current estimates and were likely achieved by rapid subsidence of the floor rocks along faults. We propose that the Skaergaard is a plutonic equivalent of supereruptions or intrusions that grow via catastrophically rapid magma emplacement into the crust, producing totally molten magma chambers in a matter of a few months to dozens of years.

Zobrazit více v PubMed

Lundstrom C. C., Glazner A. F., Silicic magmatism and the volcanic–plutonic connection. Elements 12, 91–96 (2016).

Coleman D. S., Mills R. D., Zimmerer M. J., The pace of plutonism. Elements 12, 97–102 (2016).

Menand T., Annen C., de Saint Blanquat M., Rates of magma transfer in the crust: Insights into magma reservoir recharge and pluton growth. Geology 43, 199–202 (2015).

de Saint Blanquat M., Horsman E., Habert G., Morgan S., Vanderhaeghe O., Law R., Tikoff B., Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).

Leuthold J., Müntener O., Baumgartner L. P., Putlitz B., Ovtcharova M., Schaltegger U., Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet. Sci. Lett. 325-326, 85–92 (2012).

Scoates J. S., Wall C. J., Friedman R. M., Weis D., Mathez E. A., VanTongeren J. A., Dating the Bushveld Complex: Timing of crystallization, duration of magmatism, and cooling of the world’s largest layered intrusion and related rocks. J. Petrol. 62, egaa107 (2021).

Coleman D. S., Gray W., Glazner A. F., Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433–436 (2004).

Pritchard M. E., Simons M., A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418, 167–171 (2002). PubMed

Remy D., Froger J. L., Perfettini H., Bonvalot S., Gabalda G., Albino F., Cayol V., Legrand D., Saint Blanquat M. D., Persistent uplift of the Lazufre volcanic complex (Central Andes): New insights from PCAIM inversion of InSAR time series and GPS data. Geochem. Geophys. Geosyst. 15, 3591–3611 (2014).

Froger J.-L., Remy D., Bonvalot S., Legrand D., Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data. Earth Planet. Sci. Lett. 255, 148–163 (2007).

Latypov R. M., Chistyakova S. Y., Misinterpretation of zircon ages in layered intrusions. S. Afr. J. Geol. 125, 13–26 (2022).

Latypov R., Comment on “The Stillwater Complex: Integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion” by Wall et al. (J. Petrology, 59, 153–190, 2018). J. Petrol. 60, 1095–1098 (2019).

Mitchell A. A., Comment on ‘Dating the Bushveld complex: Timing of crystallization, duration of magmatism, and cooling of the world’s largest layered intrusion and related rocks’ by J. S. Scoates, C. J. Wall, R. M. Friedman, D. Weis, E. A. Mathez & J. A. VanTongeren (2021) Journal of Petrology. J. Petrol. 62, egab071 (2021).

Barboni M., Annen C., Schoene B., Evaluating the construction and evolution of upper crustal magma reservoirs with coupled U/Pb zircon geochronology and thermal modeling: A case study from the Mt. Capanne pluton (Elba, Italy). Earth Planet. Sci. Lett. 432, 436–448 (2015).

Glazner A. F., Thermal constraints on the longevity, depth, and vertical extent of magmatic systems. Geochem. Geophys. Geosyst. 22, 1–12 (2021).

Latypov R. M., Chistyakova S. Y., Namur O., Barnes S., Dynamics of evolving magma chambers: Textural and chemical evolution of cumulates at the arrival of new liquidus phases. Earth Sci. Rev. 210, 103388 (2020).

Annen C., Scaillet B., Sparks R. S. J., Thermal constraints on the emplacement rate of a large intrusive complex: The Manaslu Leucogranite, Nepal Himalaya. J. Petrol. 47, 71–95 (2006).

de Saint-Blanquat M., Law R. D., Bouchez J.-L., Morgan S. S., Internal structure and emplacement of the papoose flat pluton: An integrated structural, petrographic, and magnetic susceptibility study. Geol. Soc. Am. Bull. 113, 976–995 (2001).

de Saint-Blanquat M., Habert G., Horsman E., Morgan S. S., Tikoff B., Launeau P., Gleizes G., Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428, 1–31 (2006).

L. R. Wager, G. M. Brown, Layered Igneous Rocks (Oliver & Boyd, 1968).

Nielsen T. F. D., The shape and volume of the Skaergaard Intrusion, Greenland: Implications for mass balance and bulk composition. J. Petrol. 45, 507–530 (2004).

Namur O., Humphreys M. C. S., Holness M. B., Crystallization of interstitial liquid and latent heat buffering in solidifying gabbros: Skaergaard Intrusion, Greenland. J. Petrol. 55, 1389–1427 (2014).

Salmonsen L. P., Tegner C., Crystallization sequence of the upper border series of the Skaergaard Intrusion: Revised subdivision and implications for chamber-scale magma homogeneity. Contrib. Mineral. Petrol. 165, 1155–1171 (2013).

Hagen-Peter G., Tegner C., Lesher C. E., Strontium isotope systematics for plagioclase of the Skaergaard intrusion (East Greenland): A window to crustal assimilation, differentiation, and magma dynamics. Geology 47, 313–316 (2019).

McBirney A. R., Mechanisms of differentiation in the Skaergaard Intrusion. J. Geol. Soc. London 152, 421–435 (1995).

McBirney A. R., Noyes R. M., Crystallization and layering of the Skaergaard intrusion. J. Petrol. 20, 487–554 (1979).

Thy P., Lesher C. E., Tegner C., The Skaergaard liquid line of descent revisited. Contrib. Mineral. Petrol. 157, 735–747 (2009).

Stewart B. W., DePaolo D. J., Isotopic studies of processes in mafic magma chambers: II. The Skaergaard Intrusion, East Greenland. Contr. Mineral. and Petrol. 104, 125–141 (1990).

Thy P., Lesher C. E., Nielsen T. F. D., Brooks C. K., Experimental constraints on the Skaergaard liquid line of descent. Lithos. 92, 154–180 (2006).

Thy P., Lesher C. E., Tegner C., Further work on experimental plagioclase equilibria and the Skaergaard liquidus temperature. Am. Min. 98, 1360–1367 (2013).

Holness M. B., Tegner C., Namur O., Pilbeam L., The earliest history of the Skaergaard magma chamber: A textural and geochemical study of the Cambridge drill core. J. Petrol. 56, 1199–1227 (2015).

Andreasen R., Peate D. W., Brooks C. K., Magma plumbing systems in large igneous provinces: Inferences from cyclical variations in Palaeogene East Greenland basalts. Contrib. Mineral. Petrol. 147, 438–452 (2004).

Nielsen T. F. D., Brooks C. K., Keiding J. K., Bulk liquid for the Skaergaard Intrusion and its PGE-Au mineralization: Composition, correlation, liquid line of descent, and timing of sulphide saturation and silicate–silicate immiscibility. J. Petrol. 60, 1853–1880 (2019).

Jakobsen J. K., Tegner C., Brooks C. K., Kent A. J. R., Lesher C. E., Nielsen T. F. D., Wiedenbeck M., Parental magma of the Skaergaard intrusion: Constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes. Contrib. Mineral. Petrol. 159, 61–79 (2010).

Cho J., Scoates J. S., Weis D., Amini M., Lead isotope geochemistry of plagioclase in the Skaergaard intrusion by LA-ICP-MS: Assessing the effects of crustal contamination and link with East Greenland flood basalts. Chem. Geol. 592, 120723 (2022).

Holness M. B., Humphreys M. C. S., Namur O., Andersen J. C. Ø., Tegner C., Nielsen T. F. D., Crystal mush growth and collapse on a steep wall: The marginal border series of the Skaergaard Intrusion, East Greenland. J. Petrol. , 1–21 (2021).

Marsh B. D., Magmatism, magma, and magma chambers. Treatise on Geophysics , 273–323 (2015).

T. F. D. Nielsen, J. C. Ø. Andersen, C. K. Brooks, The Platinova Reef of the Skaergaard intrusion, in Exploration for Platinum Group Element Deposits, J. E. Mungall, Ed. (Mineralogical Association of Canada, 2005), vol. 35, pp. 431–455.

Norton D., Taylor H. P., Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: An analysis of the Skaergaard intrusion. J. Petrol. 20, 421–486 (1979).

Norton D., Taylor H. P., Bird D. K., The geometry and high-temperature brittle deformation of the Skaergaard Intrusion. J. Geophys. Res. 89, 10178–10192 (1984).

Irvine T. N., Andersen J. C. Ø., Brooks C. K., Included blocks (and blocks within blocks) in the Skaergaard intrusion: Geologic relations and the origins of rhythmic modally graded layers. Geol. Soc. Am. Bull. 110, 1398–1447 (1998).

T. N. Irvine, Emplacement of the Skaergaard intrusion, in Carnegie Institution of Washington Year Book (Carnegie Institution of Washington, 1992), vol. 91, pp. 1991–1996.

Cruden A. R., McCaffrey K. J. W., Growth of plutons by floor subsidence: Implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys. Chem. Earth Part A Solid Earth Geodesy 26, 303–315 (2001).

Annen C., From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

Toplis M. J., Carroll M. R., An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J. Petrol. 36, 1137–1170 (1995).

Annen C., Factors affecting the thickness of thermal aureoles. Front. Earth Sci. 5, 82 (2017).

McBirney A. R., The Skaergaard intrusion. Dev. Petrol. 15, 147–180 (1996).

Brooks C. K., Nielsen T. F. D., Early stages in the differentiation of the Skaergaard magma as revealed by a closely related suite of dike rocks. Lithos. 11, 1–14 (1978).

Cruden A. R., On the emplacement of tabular granites. J. Geol. Soc. London 155, 853–862 (1998).

Clough C. T., Maufe H. B., Bailey E. B., The cauldron-subsidence of Glen Coe, and the associated igneous phenomena. Quart. J. Geol. Soc. 65, 611–678 (1909).

Bussell M. A., Pitcher W. S., Wilson P. A., Ring complexes of the Peruvian Coastal Batholith: A long-standing subvolcanic regime. Can. J. Earth Sci. 13, 1020–1030 (1976).

A. R. Cruden, R. F. Weinberg, Mechanisms of magma transport and storage in the lower and middle crust-magma segregation, ascent and emplacement, in Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust, S. Burchardt, Ed. (Elsevier, ed. 2, 2018), pp. 13–53.

Marsh B. D., Solidification fronts and magmatic evolution. Mineral. Mag. 60, 5–40 (1996).

Svensen H., Corfu F., Polteau S., Hammer Ø., Planke S., Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet. Sci. Lett. 325-326, 1–9 (2012).

Petford N., Lister J. R., Kerr R. C., The ascent of felsic magmas in dykes. Lithos 32, 161–168 (1994).

Nielsen T. F. D., The tertiary dike swarms of the Kangerdlugssuaq area, East Greenland. Contrib. Mineral. Petrol. 67, 63–78 (1978).

R. E. Ernst, Large Igneous Provinces (Cambridge Univ. Press, 2014).

H. R. Shaw, D. A. Swanson, Eruption and flow rates of flood basalts, in Proceedings of the Second Columbia River Basalt Symposium, E. H. Gilmour, Ed. (Eastern Washington State College Press, 1970), pp. 271–299.

Ernst R. E., Liikane D. A., Jowitt S. M., Buchan K. L., Blanchard J. A., A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. J. Volcanol. Geotherm. Res. 384, 75–84 (2019).

Biasi J., Karlstrom L., Timescales of magma transport in the Columbia River flood basalts, determined by paleomagnetic data. Earth Planet. Sci. Lett. 576, 117169 (2021).

S. Reidel, T. Tolan, V. Camp, Columbia River flood basalt flow emplacement rates—Fast, slow, or variable?, in Field Volcanology: A Tribute to the Distinguished Career of Don Swanson, M. P. Poland, M. O. Garcia, V. E. Camp, A. Grunder, Eds. (The Geological Society of America, 2019), vol. 538, pp. 1–19.

Reidel S. P., Emplacement of Columbia River flood basalt. J. Geophys. Res. 103, 27393–27410 (1998).

Swanson D. A., Wright T. L., Helz R., Linear vent systems and estimated rates of magma production and eruption for the Yakima Basalt on the Columbia Plateau. Am. J. Sci. 275, 877–905 (1975).

Bryan S. E., Peate I. U., Peate D. W., Self S., Jerram D. A., Mawby M. R., Marsh J. S. (G.), Miller J. A., The largest volcanic eruptions on Earth. Earth Sci. Rev. 102, 207–229 (2010).

Spray J. G., Superfaults. Geology 25, 579–582 (1997).

Lipman P. W., Caldera-collapse breccias in the western San Juan Mountains, Colorado. GSA Bull. 87, 1397–1410 (1976).

Ledbetter M. T., Sparks R. S. J., Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers. Geology 7, 240–244 (1979).

H. Williams, A. R. McBirney, in Volcanology (Freeman, Cooper & Co., 1979), vol. 46.

Crisp J. A., Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

Cawthorn R. G., Walraven F., Emplacement and crystallization time for the Bushveld Complex. J. Petrol. 39, 1669–1687 (1998).

R. G. Cawthorn, in Layered Intrusions of Developments in Petrology, R. G. Cawthorn, Ed. (Science Inc., Elsevier, 1996), vol. 15, p. 544.

I. Parsons, in Origins of Igneous Layering of Nato Science Series C: (Springer, ed. 1987, 1987), vol. 196, p. 687.

B. Charlier, O. Namur, R. Latypov, C. Tegner, Layered Intrusions (Springer Geology, Springer, 2015).

B. O’Driscoll, J. A. VanTongeren, Eds., Layered intrusions, in Elements (Consortium of scientific societies, 2017), vol. 13.

S. A. Morse, Kiglapait Intrusion, Labrador, in Layered Intrusions (Springer Dordrecht, 2015), pp. 589–648.

Ivanic T. J., Nebel O., Brett J., Murdie R. E., The windimurra igneous complex: An archean bushveld? Special Publications 453, 313–348 (2018).

Jenkins M. C., Mungall J. E., Genesis of the peridotite zone, stillwater complex, Montana, USA. J. Petrol. 59, 2157–2189 (2018).

Simkin T., Terrestrial volcanism in space and time. Annu. Rev. Earth Planet. Sci. 21, 427–452 (1993).

Svensen H. H., Jerram D. A., Polozov A. G., Planke S., Neal C. R., Augland L. E., Emeleus H. C., Thinking about LIPs: A brief history of ideas in Large igneous province research. Tectonophysics 760, 229–251 (2019).

Coffin M. F., Eldholm O., Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1 (1994).

Annen C., Pichavant M., Bachmann O., Burgisser A., Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc). J. Geophys. Res. Solid Earth 113, (2008).

Chapman D. S., Furlong K. P., Thermal state of the continental lower crust. Continental Lower Crust 23, 179–199 (1992).

Whittington A. G., Hofmeister A. M., Nabelek P. I., Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458, 319–321 (2009). PubMed

Sparks R. S. J., Huppert H. E., Density changes during the fractional crystallization of basaltic magmas: Fluid dynamic implications. Contrib. Mineral. Petrol. 85, 300–309 (1984).

Nielsen T. F. D., Rudashevsky N. S., Rudashevsky V. N., Weatherley S. M., Andersen J. C. Ø., Elemental distributions and mineral parageneses of the Skaergaard PGE–Au mineralization: Consequences of accumulation, redistribution, and equilibration in an upward-migrating mush zone. J. Petrol. 60, 1903–1934 (2019).

Bufe N. A., Holness M. B., Humphreys M. C. S., Contact metamorphism of Precambrian gneiss by the Skaergaard intrusion. J. Petrol. 55, 1595–1617 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...