Thermal stabilisation of the short DNA duplexes by acridine-4-carboxamide derivatives
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36156152
PubMed Central
PMC9561273
DOI
10.1093/nar/gkac777
PII: 6717828
Knihovny.cz E-resources
- MeSH
- Acridines * MeSH
- DNA genetics metabolism MeSH
- Intercalating Agents * MeSH
- Oligodeoxyribonucleotides MeSH
- Carbon MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acridines * MeSH
- DNA MeSH
- Intercalating Agents * MeSH
- Oligodeoxyribonucleotides MeSH
- Carbon MeSH
The short oligodeoxynucleotide (ODN) probes are suitable for good discrimination of point mutations. However, the probes suffer from low melting temperatures. In this work, the strategy of using acridine-4-carboxamide intercalators to improve thermal stabilisation is investigated. The study of large series of acridines revealed that optimal stabilisation is achieved upon decoration of acridine by secondary carboxamide carrying sterically not demanding basic function bound through a two-carbon linker. Two highly active intercalators were attached to short probes (13 or 18 bases; designed as a part of HFE gene) by click chemistry into positions 7 and/or 13 and proved to increase the melting temperate (Tm) of the duplex by almost 8°C for the best combination. The acridines interact with both single- and double-stranded DNAs with substantially preferred interaction for the latter. The study of interaction suggested higher affinity of the acridines toward the GC- than AT-rich sequences. Good discrimination of two point mutations was shown in practical application with HFE gene (wild type, H63D C > G and S65C A > C mutations). Acridine itself can also serve as a fluorophore and also allows discrimination of the fully matched sequences from those with point mutations in probes labelled only with acridine.
See more in PubMed
Kodama S., Asano S., Moriguchi T., Sawai H., Shinozuka K.. Novel fluorescent oligoDNA probe bearing a multi-conjugated nucleoside with a fluorophore and a non-fluorescent intercalator as a quencher. Bioorg. Med. Chem. Lett. 2006; 16:2685–2688. PubMed
Yamane A. MagiProbe: a novel fluorescence quenching-based oligonucleotide probe carrying a fluorophore and an intercalator. Nucleic Acids Res. 2002; 30:e97. PubMed PMC
Kutyavin I.V., Afonina I.A., Mills A., Gorn V.V., Lukhtanov E.A., Belousov E.S., Singer M.J., Walburger D.K., Lokhov S.G., Gall A.A.. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 2000; 28:655–661. PubMed PMC
Chen K., Kong M., Liu J., Jiao J., Zeng Z., Shi L., Bu X., Yan Y., Chen Y., Gao R.. Rapid differential detection of subtype H1 and H3 swine influenza viruses using a taqman-MGB-based duplex one-step real-time RT-PCR assay. Arch. Virol. 2021; 166:2217–2224. PubMed
Danielsen M.B., Christensen N.J., Jørgensen P.T., Jensen K.J., Wengel J., Lou C.. Polyamine-Functionalized 2′-Amino-LNA in oligonucleotides: facile synthesis of new monomers and high-affinity binding towards ssDNA and dsDNA. Chem. Eur. J. 2021; 27:1416–1422. PubMed
Menzi M., Wild B., Pradère U., Malinowska A.L., Brunschweiger A., Lightfoot H.L., Hall J.. Towards improved oligonucleotide therapeutics through faster target binding kinetics. Chem. Eur. J. 2017; 23:14221–14230. PubMed
Qiu J., Wilson A., El-Sagheer A.H., Brown T.. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection. Nucleic Acids Res. 2016; 44:e138. PubMed PMC
Walsh S., El-Sagheer A.H., Brown T.. Fluorogenic thiazole orange TOTFO probes stabilise parallel DNA triplexes at pH 7 and above. Chem. Sci. 2018; 9:7681–7687. PubMed PMC
Saady A., Wojtyniak M., Varon E., Böttner V., Kinor N., Shav-Tal Y., Ducho C., Fischer B.. Specific, sensitive, and quantitative detection of HER-2 mRNA breast cancer marker by fluorescent light-up hybridisation probes. Bioconjugate Chem. 2020; 31:1188–1198. PubMed
Emehiser R.G., Hrdlicka P.J.. Chimeric γPNA–Invader probes: using intercalator-functionalized oligonucleotides to enhance the DNA-targeting properties of γPNA. Org. Biomol. Chem. 2020; 18:1359–1368. PubMed
Asseline U., Toulme F., Thuong N.T., Delarue M., Montenay-Garestier T., Hélène C.. Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site. EMBO J. 1984; 3:795–800. PubMed PMC
Ranasinghe R.T., Brown L.J., Brown T.. Linear fluorescent oligonucleotide probes with an acridine quencher generate a signal upon hybridisation. Chem. Commun. 2001; 2001:1480–1481.
Ji H., Johnson N.P., von Hippel P.H., Marcus A.H.. Local DNA base conformations and ligand intercalation in DNA constructs containing optical probes. Biophys. J. 2019; 117:1101–1115. PubMed PMC
Orson F.M., Kinsey B.M., McShan W.M.. Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides. Nucleic Acids Res. 1994; 22:479–484. PubMed PMC
Klysik J., Kinsey B.M., Hua P., Glass G.A., Orson F.M.. A 15-base acridine-conjugated oligodeoxynucleotide forms triplex DNA with its IL-2Rα promoter target with greatly improved avidity. Bioconjugate Chem. 1997; 8:318–326. PubMed
Shinozuka K., Seto Y., Sawai H.. A novel multifunctionally labelled DNA probe bearing an intercalator and a fluorophore. J. Chem. Soc., Chem. Commun. 1994; 1994:1377–1378.
François J.-C., Hélène C.. Recognition of hairpin-containing single-stranded DNA by oligonucleotides containing internal acridine derivatives. Bioconjugate Chem. 1999; 10:439–446. PubMed
Fukui K., Iwane K., Shimidzu T., Tanaka K.. Oligonucleotides covalently linked to an acridine at artificial abasic site: influence of linker length and the base-sequence. Tetrahedron Lett. 1996; 37:4983–4986.
Fukui K., Tanaka K.. The acridine ring selectively intercalated into a DNA helix at various types of abasic sites: double strand formation and photophysical properties. Nucleic Acids Res. 1996; 24:3962–3967. PubMed PMC
Asseline U., Bonfils E., Dupret D., Thuong N.T.. Synthesis and binding properties of oligonucleotides covalently linked to an acridine derivative: new study of the influence of the dye attachment site. Bioconjugate Chem. 1996; 7:369–379. PubMed
Fukui K., Morimoto M., Segawa H., Tanaka K., Shimidzu T.. Synthesis and properties of an oligonucleotide modified with an acridine derivative at the artificial abasic site. Bioconjugate Chem. 1996; 7:349–355. PubMed
Balbi A., Sottofattori E., Grandi T., Mazzei M., Abramova T.V., Lokhov S.G., Lebedev A.V.. Synthesis and complementary complex formation properties of oligonucleotides covalently linked to new stabilising agents. Tetrahedron. 1994; 50:4009–4018.
Balbi A., Sottofattori E., Grandi T., Mazzei M., Pyshnyi D.S., Lokhov S.G., Lebedev A.V.. Synthesis and hybridisation properties of the conjugates of oligonucleotides and stabilisation agents—II. Bioorg. Med. Chem. 1997; 5:1903–1910. PubMed
Sakore T.D., Jain S.C., Tsai C.C., Sobell H.M.. Mutagen-nucleic acid intercalative binding: structure of a 9-aminoacridine: 5-iodocytidylyl (3'-5')guanosine crystalline complex. Proc. Natl. Acad. Sci. U.S.A. 1977; 74:188. PubMed PMC
Adams A., Guss J.M., Collyer C.A., Denny W.A., Wakelin L.P.G.. Crystal structure of the topoisomerase II poison 9-Amino-[N- (2-dimethylamino)ethyl]acridine-4-carboxamide bound to the DNA hexanucleotide d (CGTACG)2. Biochemistry. 1999; 38:9221–9233. PubMed
Rehn C., Pindur U.. Molecular modeling of intercalation complexes of antitumor active 9-aminoacridine and a [d, e]-anellated isoquinoline derivative with base paired deoxytetranucleotides. Monatsh. Chem./Chem. Monthly. 1996; 127:645–658.
Adams A., Guss J.M., Denny W.A., Wakelin L.P.. Crystal structure of 9-amino-N-[2- (4-morpholinyl) ethyl]-4-acridinecarboxamide bound to d (CGTACG) 2: implications for structure–activity relationships of acridinecarboxamide topoisomerase poisons. Nucleic Acids Res. 2002; 30:719–725. PubMed PMC
Baguley B.C., Denny W.A., Atwell G.J., Cain B.F.. Potential antitumor agents. 34. Quantitative relationships between DNA binding and molecular structure for 9-anilinoacridines substituted in the anilino ring. J. Med. Chem. 1981; 24:170–177. PubMed
Atwell G.J., Cain B.F., Baguley B.C., Finlay G.J., Denny W.A.. Potential antitumor agents. Part 43. Synthesis and biological activity of dibasic 9-aminoacridine-4-carboxamides, a new class of antitumor agent. J. Med. Chem. 1984; 27:1481–1485. PubMed
Wakelin L.P., Atwell G.J., Rewcastle G.W., Denny W.A.. Relationships between DNA-binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. J. Med. Chem. 1987; 30:855–861. PubMed
Howell L.A., Gulam R., Mueller A., O’Connell M.A., Searcey M.. Design and synthesis of threading intercalators to target DNA. Bioorg. Med. Chem. Lett. 2010; 20:6956–6959. PubMed
Silva M.d.M., Macedo T.S., Teixeira H.M.P., Moreira D.R.M., Soares M.B., Pereira A.L.d.C., Serafim V.d.L., Mendonça-Júnior F.J., Maria do Carmo A., de Moura R.O.. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: proposing a possible mechanism of action. J. Photochem. Photobiol. B. 2018; 189:165–175. PubMed
Goodell J.R., Madhok A.A., Hiasa H., Ferguson D.M.. Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg. Med. Chem. 2006; 14:5467–5480. PubMed
Rewcastle G.W., Atwell G.J., Chambers D., Baguley B.C., Denny W.A.. Potential antitumor agents. 46. Structure-activity relationships for acridine monosubstituted derivatives of the antitumor agent N-[2- (dimethylamino) ethyl]-9-aminoacridine-4-carboxamide. J. Med. Chem. 1986; 29:472–477. PubMed
Todd A.K., Adams A., Thorpe J.H., Denny W.A., Wakelin L.P., Cardin C.J.. Major groove binding and ‘DNA-Induced’Fit in the intercalation of a derivative of the mixed topoisomerase I/II poison N- (2- (Dimethylamino) ethyl) acridine-4-carboxamide (DACA) into DNA: X-ray. J. Med. Chem. 1999; 42:536–540. PubMed
Gouveia R.G., Ribeiro A.G., Segundo M.Â.S.P., de Oliveira J.F., de Lima M.d.C.A., de Lima Souza T.R.C., de Almeida S.M.V., de Moura R.O.. Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel spiroacridine derivatives. Bioorg. Med. Chem. 2018; 26:5911–5921. PubMed
Krokidis M.G., Molphy Z., Efthimiadou E.K., Kokoli M., Argyri S.-M., Dousi I., Masi A., Papadopoulos K., Kellett A., Chatgilialoglu C.. Assessment of DNA topoisomerase i unwinding activity, radical scavenging capacity, and inhibition of breast cancer cell viability of N-alkyl-acridones and n, N′-dialkyl-9 9′-biacridylidenes. Biomolecules. 2019; 9:177. PubMed PMC
Hridya V., Hynes J.T., Mukherjee A.. Dynamical recrossing in the intercalation process of the anticancer agent proflavine into DNA. J. Phys. Chem. B. 2019; 123:10904–10914. PubMed
Prasher P., Sharma M.. Medicinal chemistry of acridine and its analogues. MedChemComm. 2018; 9:1589–1618. PubMed PMC
Laskowski T., Andrałojć W., Grynda J., Gwarda P., Mazerski J., Gdaniec Z.. A strong preference for the TA/TA dinucleotide step discovered for an acridine-based, potent antitumor dsDNA intercalator, C-1305: NMR-driven structural and sequence-specificity studies. Sci. Rep. 2020; 10:11697. PubMed PMC
Kuzuya A., Komiyama M.. Sequence-selective RNA scission by non-covalent combination of acridine-tethered DNA and lanthanide (III) ion. Chem. Lett. 2000; 29:1378–1379.
Shi Y., Machida K., Kuzuya A., Komiyama M.. Design of phosphoramidite monomer for optimal incorporation of functional intercalator to main chain of oligonucleotide. Bioconjugate Chem. 2005; 16:306–311. PubMed
Kuzuya A., Machida K., Shi Y., Tanaka K., Komiyama M.. Site-Selective RNA activation by acridine-modified oligodeoxynucleotides in metal-ion catalyzed hydrolysis: a comprehensive study. ACS Omega. 2017; 2:5370–5377. PubMed PMC
Agard N.J., Prescher J.A., Bertozzi C.R.. A strain-promoted [3+ 2] azide− alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am Chem. Soc. 2004; 126:15046–15047. PubMed
Jewett J.C., Bertozzi C.R.. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010; 39:1272–1279. PubMed PMC
Krell K., Harijan D., Ganz D.e., Doll L., Wagenknecht H.-A.. Postsynthetic modifications of DNA and RNA by means of copper-free cycloadditions as bioorthogonal reactions. Bioconjugate Chem. 2020; 31:990–1011. PubMed
Kim E., Koo H.. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem. Sci. 2019; 10:7835–7851. PubMed PMC
Fantoni N.Z., El-Sagheer A.H., Brown T.. A hitchhiker's guide to click-chemistry with nucleic acids. Chem. Rev. 2021; 121:7122–7154. PubMed
Muller D., Zeltser I., Bitan G., Gilon C.. Building units for N-Backbone cyclic peptides. 3. Synthesis of protected Nα- (ω-Aminoalkyl)amino acids and Nα- (ω-Carboxyalkyl)amino acids. J. Org. Chem. 1997; 62:411–416. PubMed
Romuald C., Busseron E., Coutrot F.. Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. J. Org. Chem. 2010; 75:6516–6531. PubMed
Hickey S.M., Ashton T.D., Khosa S.K., Pfeffer F.M.. An optimised synthesis of 2-[2,3-Bis (tert-butoxycarbonyl)guanidino]ethylamine. Synlett. 2012; 23:1779–1782.
Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N.T., Montenay-Garestier T., Hélène C.. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc. Natl. Acad. Sci. U.S.A. 1984; 81:3297–3301. PubMed PMC
Babu Y.R., Bhagavanraju M., Reddy G.D., Peters G.J., Prasad V.V.S.R.. Design and synthesis of quinazolinone tagged acridones as cytotoxic agents and their effects on EGFR tyrosine kinase. Arch. Pharm. 2014; 347:624–634. PubMed
Le Gac G., Férec C. The molecular genetics of haemochromatosis. Eur. J. Hum. Genet. 2005; 13:1172–1185. PubMed
Hanson E.H., Imperatore G., Burke W.. HFE gene and hereditary hemochromatosis: a HuGE review. Am. J. Epidemiol. 2001; 154:193–206. PubMed
Asseline U., Bonfils E., Dupret D., Thuong N.T.J.B.. Synthesis and binding properties of oligonucleotides covalently linked to an acridine derivative: new study of the influence of the dye attachment site. Bioconjugate Chem. 1996; 7:369–379. PubMed
Rapireddy S., He G., Roy S., Armitage B.A., Ly D.H.. Strand invasion of mixed-sequence B-DNA by acridine-linked, γ-peptide nucleic acid (γ-PNA). J. Am Chem. Soc. 2007; 129:15596–15600. PubMed
Kim H.-K., Kim J.-M., Kim S.K., Rodger A., Nordén B.. Interactions of intercalative and minor groove binding ligands with triplex poly (dA)⊙[Poly (dT)] 2 and with duplex poly (dA)⊙ poly (dT) and poly [d (AT)] 2 studied by CD, LD, and normal absorption. Biochem. 1996; 35:1187–1194. PubMed
Wu M., Wu W., Gao X., Lin X., Xie Z.. Synthesis of a novel fluorescent probe based on acridine skeleton used for sensitive determination of DNA. Talanta. 2008; 75:995–1001. PubMed
Finlay G.J., Riou J.F., Baguley B.C.. From amsacrine to DACA (N-[2- (dimethylamino)ethyl]acridine-4-carboxamide): selectivity for topoisomerases i and II among acridine derivatives. Eur. J. Cancer. 1996; 32a:708–714. PubMed
Adams A. Crystal structures of acridines complexed with nucleic acids. Curr. Med. Chem. 2002; 9:1667–1675. PubMed
Hoory E., Budassi J., Pfeffer E., Cho N., Thalappillil J., Andersen J., Rafailovich M., Sokolov J.. Discrimination of adsorbed double-stranded and single-stranded DNA molecules on surfaces by fluorescence emission spectroscopy using acridine orange dye. J. Fluoresc. 2017; 27:2153–2158. PubMed