One of Nature's Puzzles Is Assembled: Analog of the Earth's Most Complex Mineral, Ewingite, Synthesized in a Laboratory
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17-00038
Russian Science Foundation
20-11949S
Czech Science Foundation
PubMed
36233986
PubMed Central
PMC9571951
DOI
10.3390/ma15196643
PII: ma15196643
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray diffraction, carbonate, crystal structure, ewingite, mineral, nanocluster, structural complexity, topology, uranyl,
- Publikační typ
- časopisecké články MeSH
Through the combination of low-temperature hydrothermal synthesis and room-temperature evaporation, a synthetic phase similar in composition and crystal structure to the Earth's most complex mineral, ewingite, was obtained. The crystal structures of both natural and synthetic compounds are based on supertetrahedral uranyl-carbonate nanoclusters that are arranged according to the cubic body-centered lattice principle. The structure and composition of the uranyl carbonate nanocluster were refined using the data on synthetic material. Although the stability of natural ewingite is higher (according to visual observation and experimental studies), the synthetic phase can be regarded as a primary and/or metastable reaction product which further re-crystallizes into a more stable form under environmental conditions.
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN 46556 USA
Institute of Physics ASCR v v i Na Slovance 2 818221 Prague Czech Republic
Zobrazit více v PubMed
Pauliš P., Babka K., Sejkora J., Škácha P. Uranové Minerály České Republiky a Jejich Nejvýznamnější Naleziště. Kuttna; Kutná Hora, Czech Republic: 2016. 570p. (In Czech)
Škácha P., Plášil J., Horák V. Jáchymov Mineralogická Perla Krušnohoří. Academia; Prague, Czech Republic: 2019. 682p. (In Czech)
Agricola G. In: De Re Metallica. Translation from the 1st Latin edition of, 1556. Hoover H.C., Hoover L.H., editors. The Mining Magazine, Salisbury House; London, UK: 1912. 640p
Lide D.R., editor. CRC Handbook of Chemistry and Physics. 86th ed. CRC Press; Boca Raton, FL, USA: 2005.
Plášil J., Mills S.J., Fejfarová K., Dušek M., Novák M., Škoda R., Čejka J., Sejkora J. The crystal structure of natural zippeite, K1.85H+0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, from Jáchymov, Czech Republic. Can. Mineral. 2011;49:1089–1103. doi: 10.3749/canmin.49.4.1089. DOI
Plášil J., Hloušek J., Veselovský F., Fejfarová K., Dušek M., Škoda R., Novák M., Čejka J., Sejkora J., Ondruš P. Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulphate mineral from Jáchymov, Czech Republic. Am. Mineral. 2012;97:447–454. doi: 10.2138/am.2012.3976. DOI
Plášil J., Veselovský F., Hloušek J., Šák M., Sejkora J., Cejka J., Škácha P., Kasatkin A.V. Mathesiusite, K5(UO2)4(SO4)4(VO5)(H2O)4, a new uranyl vanadate-sulfate from Jáchymov, Czech Republic. Am. Mineral. 2014;99:625–632. doi: 10.2138/am.2014.4681. DOI
Plášil J., Hloušek J., Kasatkin A.V., Škoda R., Novák M., Čejka J. Geschieberite, K2(UO2)(SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov. Mineral. Mag. 2015;79:205–216. doi: 10.1180/minmag.2015.079.1.16. DOI
Plášil J., Hloušek J., Kasatkin A.V., Belakovskiy D.I., Čejka J., Chernyshov D. Ježekite, Na8[(UO2)(CO3)3](SO4)2·3H2O, a new uranyl mineral from Jáchymov, Czech Republic. J. Geosci. 2015;60:259–267. doi: 10.3190/jgeosci.203. DOI
Plášil J., Hlousek J., Kasatkin A.V., Novak M., Cejka J., Lapcak L. Svornostite, K2Mg[(UO2)(SO4)2]2∙8H2O, a new uranyl sulfate mineral from Jáchymov, Czech Republic. J. Geosci. 2015;60:113–121. doi: 10.3190/jgeosci.192. DOI
Plášil J., Škácha P., Sejkora J., Kampf A.R., Škoda R., Čejka J., Hloušek J., Kasatkin A.V., Pavlíček R., Babka K. Plavnoite, a new K-Mn member of the zippeite group from Jáchymov, Czech Republic. Eur. J. Mineral. 2017;29:117–128. doi: 10.1127/ejm/2017/0029-2583. DOI
Olds T., Plášil J., Kampf A., Dal Bo F., Burns P. Paddlewheelite, a New Uranyl Carbonate from the Jáchymov District, Bohemia, Czech Republic. Minerals. 2018;8:511. doi: 10.3390/min8110511. DOI
Olds T., Plášil J., Kampf A., Simonetti A., Sadergaski L., Chen Y.-S., Burns P. Ewingite: Earth’s most complex mineral. Geology. 2017;45:1007–1010. doi: 10.1130/G39433.1. DOI
CrysAlisPro Software System. Rigaku Oxford Diffraction; Oxford, UK: 2021. Version 1.171.41.103a.
Sheldrick G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. PubMed PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Libowitzky E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatsh. Chem. 1999;130:1047–1059. doi: 10.1007/BF03354882. DOI
Gurzhiy V.V., Kalashnikova S.A., Kuporev I.V., Plášil J. Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals. 2021;11:704. doi: 10.3390/cryst11060704. DOI
Krivovichev S.V. Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr. 2012;A68:393–398. doi: 10.1107/S0108767312012044. PubMed DOI
Krivovichev S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013;77:275–326. doi: 10.1180/minmag.2013.077.3.05. DOI
Krivovichev S.V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014;53:654–661. doi: 10.1002/anie.201304374. PubMed DOI
Krivovichev S.V. Structural complexity of minerals and mineral parageneses: Information and its evolution in the mineral world. In: Danisi R., Armbruster T., editors. Highlights in Mineralogical Crystallography. Walter de Gruyter GmbH; Berlin, Germany: Boston, MA, USA: 2015. pp. 31–73.
Krivovichev S.V., Hawthorne F.C., Williams P.A. Structural complexity and crystallization: The Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite) Struct. Chem. 2017;28:153–159. doi: 10.1007/s11224-016-0792-z. DOI
Izatulina A.R., Gurzhiy V.V., Krzhizhanovskaya M.G., Kuz’mina M.A., Leoni M., Frank-Kamenetskaya O.V. Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability and Phase Evolution. Cryst. Growth Des. 2018;18:5465–5478. doi: 10.1021/acs.cgd.8b00826. DOI
Plášil J. Structural complexity of uranophane and uranophane-β: Implications for their formation and occurrence. Eur. J. Mineral. 2018;30:253–257. doi: 10.1127/ejm/2017/0029-2691. DOI
Gurzhiy V.V., Tyumentseva O.S., Izatulina A.R., Krivovichev S.V., Tananaev I.G. Chemically Induced Polytypic Phase Transitions in the Mg[(UO2)(TO4)2(H2O)](H2O)4 (T = S, Se) System. Inorg. Chem. 2019;58:14760−14768. doi: 10.1021/acs.inorgchem.9b02454. PubMed DOI
Krivovichev S.V. Ladders of information: What contributes to the structural complexity in inorganic crystals. Z. Kristallogr. 2018;233:155–161. doi: 10.1515/zkri-2017-2117. DOI
Gurzhiy V.V., Plášil J. Structural complexity of natural uranyl sulfates. Acta Crystallogr. 2019;B75:39–48. doi: 10.1107/S2052520618016098. PubMed DOI
Tyumentseva O.S., Kornyakov I.V., Britvin S.N., Zolotarev A.A., Gurzhiy V.V. Crystallographic Insights into Uranyl Sulfate Minerals Formation: Synthesis and Crystal Structures of Three Novel Cesium Uranyl Sulfates. Crystals. 2019;9:660. doi: 10.3390/cryst9120660. DOI
Gurzhiy V.V., Kuporev I.V., Kovrugin V.M., Murashko M.N., Kasatkin A.V., Plášil J. Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals. 2019;9:639. doi: 10.3390/cryst9120639. DOI
Krivovichev S.V. Structural complexity and configurational entropy of crystalline solids. Acta Crystallogr. 2016;B72:274–276. PubMed
Gurzhiy V.V., Tyumentseva O.S., Krivovichev S.V., Tananaev I.G. Selective Se-for-S substitution in Cs-bearing uranyl compounds. J. Solid State Chem. 2017;248:126–133. doi: 10.1016/j.jssc.2017.02.005. DOI
Kornyakov I.V., Tyumentseva O.S., Krivovichev S.V., Gurzhiy V.V. Dimensional evolution in hydrated K+-bearing uranyl sulfates: From 2D-sheets to 3D frameworks. CrystEngComm. 2020;22:4621–4629. doi: 10.1039/D0CE00673D. DOI
Bruker AXS . Topas, V5.0: General Profile and Structure Analysis Software for Powder Diffraction Data. Bruker; Karlsruhe, Germany: 2014.
Loopstra B.O., Rietveld H.M. The structure of some alkaline-earth metal uranates. Acta Crystallogr. 1969;B25:787–791. doi: 10.1107/S0567740869002974. DOI