One of Nature's Puzzles Is Assembled: Analog of the Earth's Most Complex Mineral, Ewingite, Synthesized in a Laboratory

. 2022 Sep 25 ; 15 (19) : . [epub] 20220925

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36233986

Grantová podpora
19-17-00038 Russian Science Foundation
20-11949S Czech Science Foundation

Through the combination of low-temperature hydrothermal synthesis and room-temperature evaporation, a synthetic phase similar in composition and crystal structure to the Earth's most complex mineral, ewingite, was obtained. The crystal structures of both natural and synthetic compounds are based on supertetrahedral uranyl-carbonate nanoclusters that are arranged according to the cubic body-centered lattice principle. The structure and composition of the uranyl carbonate nanocluster were refined using the data on synthetic material. Although the stability of natural ewingite is higher (according to visual observation and experimental studies), the synthetic phase can be regarded as a primary and/or metastable reaction product which further re-crystallizes into a more stable form under environmental conditions.

Zobrazit více v PubMed

Pauliš P., Babka K., Sejkora J., Škácha P. Uranové Minerály České Republiky a Jejich Nejvýznamnější Naleziště. Kuttna; Kutná Hora, Czech Republic: 2016. 570p. (In Czech)

Škácha P., Plášil J., Horák V. Jáchymov Mineralogická Perla Krušnohoří. Academia; Prague, Czech Republic: 2019. 682p. (In Czech)

Agricola G. In: De Re Metallica. Translation from the 1st Latin edition of, 1556. Hoover H.C., Hoover L.H., editors. The Mining Magazine, Salisbury House; London, UK: 1912. 640p

Lide D.R., editor. CRC Handbook of Chemistry and Physics. 86th ed. CRC Press; Boca Raton, FL, USA: 2005.

Plášil J., Mills S.J., Fejfarová K., Dušek M., Novák M., Škoda R., Čejka J., Sejkora J. The crystal structure of natural zippeite, K1.85H+0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, from Jáchymov, Czech Republic. Can. Mineral. 2011;49:1089–1103. doi: 10.3749/canmin.49.4.1089. DOI

Plášil J., Hloušek J., Veselovský F., Fejfarová K., Dušek M., Škoda R., Novák M., Čejka J., Sejkora J., Ondruš P. Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulphate mineral from Jáchymov, Czech Republic. Am. Mineral. 2012;97:447–454. doi: 10.2138/am.2012.3976. DOI

Plášil J., Veselovský F., Hloušek J., Šák M., Sejkora J., Cejka J., Škácha P., Kasatkin A.V. Mathesiusite, K5(UO2)4(SO4)4(VO5)(H2O)4, a new uranyl vanadate-sulfate from Jáchymov, Czech Republic. Am. Mineral. 2014;99:625–632. doi: 10.2138/am.2014.4681. DOI

Plášil J., Hloušek J., Kasatkin A.V., Škoda R., Novák M., Čejka J. Geschieberite, K2(UO2)(SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov. Mineral. Mag. 2015;79:205–216. doi: 10.1180/minmag.2015.079.1.16. DOI

Plášil J., Hloušek J., Kasatkin A.V., Belakovskiy D.I., Čejka J., Chernyshov D. Ježekite, Na8[(UO2)(CO3)3](SO4)2·3H2O, a new uranyl mineral from Jáchymov, Czech Republic. J. Geosci. 2015;60:259–267. doi: 10.3190/jgeosci.203. DOI

Plášil J., Hlousek J., Kasatkin A.V., Novak M., Cejka J., Lapcak L. Svornostite, K2Mg[(UO2)(SO4)2]2∙8H2O, a new uranyl sulfate mineral from Jáchymov, Czech Republic. J. Geosci. 2015;60:113–121. doi: 10.3190/jgeosci.192. DOI

Plášil J., Škácha P., Sejkora J., Kampf A.R., Škoda R., Čejka J., Hloušek J., Kasatkin A.V., Pavlíček R., Babka K. Plavnoite, a new K-Mn member of the zippeite group from Jáchymov, Czech Republic. Eur. J. Mineral. 2017;29:117–128. doi: 10.1127/ejm/2017/0029-2583. DOI

Olds T., Plášil J., Kampf A., Dal Bo F., Burns P. Paddlewheelite, a New Uranyl Carbonate from the Jáchymov District, Bohemia, Czech Republic. Minerals. 2018;8:511. doi: 10.3390/min8110511. DOI

Olds T., Plášil J., Kampf A., Simonetti A., Sadergaski L., Chen Y.-S., Burns P. Ewingite: Earth’s most complex mineral. Geology. 2017;45:1007–1010. doi: 10.1130/G39433.1. DOI

CrysAlisPro Software System. Rigaku Oxford Diffraction; Oxford, UK: 2021. Version 1.171.41.103a.

Sheldrick G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. PubMed PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Libowitzky E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatsh. Chem. 1999;130:1047–1059. doi: 10.1007/BF03354882. DOI

Gurzhiy V.V., Kalashnikova S.A., Kuporev I.V., Plášil J. Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals. 2021;11:704. doi: 10.3390/cryst11060704. DOI

Krivovichev S.V. Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr. 2012;A68:393–398. doi: 10.1107/S0108767312012044. PubMed DOI

Krivovichev S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013;77:275–326. doi: 10.1180/minmag.2013.077.3.05. DOI

Krivovichev S.V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014;53:654–661. doi: 10.1002/anie.201304374. PubMed DOI

Krivovichev S.V. Structural complexity of minerals and mineral parageneses: Information and its evolution in the mineral world. In: Danisi R., Armbruster T., editors. Highlights in Mineralogical Crystallography. Walter de Gruyter GmbH; Berlin, Germany: Boston, MA, USA: 2015. pp. 31–73.

Krivovichev S.V., Hawthorne F.C., Williams P.A. Structural complexity and crystallization: The Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite) Struct. Chem. 2017;28:153–159. doi: 10.1007/s11224-016-0792-z. DOI

Izatulina A.R., Gurzhiy V.V., Krzhizhanovskaya M.G., Kuz’mina M.A., Leoni M., Frank-Kamenetskaya O.V. Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability and Phase Evolution. Cryst. Growth Des. 2018;18:5465–5478. doi: 10.1021/acs.cgd.8b00826. DOI

Plášil J. Structural complexity of uranophane and uranophane-β: Implications for their formation and occurrence. Eur. J. Mineral. 2018;30:253–257. doi: 10.1127/ejm/2017/0029-2691. DOI

Gurzhiy V.V., Tyumentseva O.S., Izatulina A.R., Krivovichev S.V., Tananaev I.G. Chemically Induced Polytypic Phase Transitions in the Mg[(UO2)(TO4)2(H2O)](H2O)4 (T = S, Se) System. Inorg. Chem. 2019;58:14760−14768. doi: 10.1021/acs.inorgchem.9b02454. PubMed DOI

Krivovichev S.V. Ladders of information: What contributes to the structural complexity in inorganic crystals. Z. Kristallogr. 2018;233:155–161. doi: 10.1515/zkri-2017-2117. DOI

Gurzhiy V.V., Plášil J. Structural complexity of natural uranyl sulfates. Acta Crystallogr. 2019;B75:39–48. doi: 10.1107/S2052520618016098. PubMed DOI

Tyumentseva O.S., Kornyakov I.V., Britvin S.N., Zolotarev A.A., Gurzhiy V.V. Crystallographic Insights into Uranyl Sulfate Minerals Formation: Synthesis and Crystal Structures of Three Novel Cesium Uranyl Sulfates. Crystals. 2019;9:660. doi: 10.3390/cryst9120660. DOI

Gurzhiy V.V., Kuporev I.V., Kovrugin V.M., Murashko M.N., Kasatkin A.V., Plášil J. Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals. 2019;9:639. doi: 10.3390/cryst9120639. DOI

Krivovichev S.V. Structural complexity and configurational entropy of crystalline solids. Acta Crystallogr. 2016;B72:274–276. PubMed

Gurzhiy V.V., Tyumentseva O.S., Krivovichev S.V., Tananaev I.G. Selective Se-for-S substitution in Cs-bearing uranyl compounds. J. Solid State Chem. 2017;248:126–133. doi: 10.1016/j.jssc.2017.02.005. DOI

Kornyakov I.V., Tyumentseva O.S., Krivovichev S.V., Gurzhiy V.V. Dimensional evolution in hydrated K+-bearing uranyl sulfates: From 2D-sheets to 3D frameworks. CrystEngComm. 2020;22:4621–4629. doi: 10.1039/D0CE00673D. DOI

Bruker AXS . Topas, V5.0: General Profile and Structure Analysis Software for Powder Diffraction Data. Bruker; Karlsruhe, Germany: 2014.

Loopstra B.O., Rietveld H.M. The structure of some alkaline-earth metal uranates. Acta Crystallogr. 1969;B25:787–791. doi: 10.1107/S0567740869002974. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...