Eddy Current Testing of Artificial Defects in 316L Stainless Steel Samples Made by Additive Manufacturing Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-21-0228
Slovak Research and Development Agency
VEGA 1/0391/22
Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 014TUKE-4/2020
Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
36234122
PubMed Central
PMC9573528
DOI
10.3390/ma15196783
PII: ma15196783
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, artificial defects, eddy current, non-destructive testing, selective laser melting, stainless steel,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing has many positives, but its incorporation into functional parts production is restricted by the presence of defects. Eddy current testing provides solutions for their identification; however, some methodology and measurement standards for AM (additive manufacturing) products are still missing. The main purpose of the experiment described within this article was to check the ability of eddy current testing to identify AM stainless steel parts and to examine the data obtained by eddy currents variation under the influence of various types of designed artificial defects. Experimental samples were designed and prepared with SLM (selective laser melting) technology. Artificial defects, included in the samples, were detected using the eddy current testing device, taking the important circumstances of this non-destructive method into account. The presented research shows significant potential for eddy current testing to identify defects in AM products, with a resolution of various types and sizes of defects. The obtained data output shows the importance of choosing the right measurement regime, excitation frequency and secondary parameters setup. Besides the eddy current testing conditions, defect properties also play a significant role, such as their shape, size, if they are filled with unmolten powder or if they reach the surface.
Zobrazit více v PubMed
Wong K.V., Hernandez A. A review of additive manufacturing. Int. Sch. Res. Not. 2012;2012:208760. doi: 10.5402/2012/208760. DOI
Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014;23:1917–1928. doi: 10.1007/s11665-014-0958-z. DOI
Despa V., Gheorghe I.G. Study of selective laser sintering: A qualitative and objective approach. Sci. Bull. Valahia Univ. Mater. Mech. 2011;6:150–155.
Kellens K., Yasa E., Dewulf W., Duflou J.R. Environmental assessment of selective laser melting and selective laser sintering. Methodology. 2010;4:1–8.
Röttger A., Boes J., Theisen W., Thiele M., Esen C., Edelmann A., Hellmann R. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 2020;108:769–783. doi: 10.1007/s00170-020-05371-1. DOI
Dong Z., Liu Y., Wen W., Ge J., Liang J. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: Modeling and experimental approaches. Materials. 2018;12:50. doi: 10.3390/ma12010050. PubMed DOI PMC
Marattukalam J.J., Karlsson D., Pacheco V., Beran P., Wiklund U., Jansson U., Hjörvarsson B., Sahlberg M. The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater. Des. 2020;193:108852. doi: 10.1016/j.matdes.2020.108852. DOI
Chen J., Yang Y., Song C., Zhang M., Wu S., Wang D. Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater. Sci. Eng. A. 2019;752:75–85. doi: 10.1016/j.msea.2019.02.097. DOI
Kaynak Y., Kitay O. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 2019;26:84–93. doi: 10.1016/j.addma.2018.12.021. DOI
Fu J., Li H., Song X., Fu M. Multi-scale defects in powder-based additively manufactured metals and alloys. J. Mater. Sci. Technol. 2022;122:165–199. doi: 10.1016/j.jmst.2022.02.015. DOI
Malekipour E., El-Mounayri H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: A review. Int. J. Adv. Manuf. Technol. 2018;95:527–550. doi: 10.1007/s00170-017-1172-6. DOI
Gu D., Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009;30:2903–2910. doi: 10.1016/j.matdes.2009.01.013. DOI
Gong H., Rafi K., Gu H., Starr T., Stucker B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014;1:87–98. doi: 10.1016/j.addma.2014.08.002. DOI
Hauser C. Ph.D. Thesis. University of Leeds; Leeds, UK: Jul, 2003. Selective Laser Sintering of a Stainless Steel Powder.
Liu Y., Yang Y., Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder. Int. J. Adv. Manuf. Technol. 2016;87:647–656. doi: 10.1007/s00170-016-8466-y. DOI
Zhang X., Xiao Z., Yu W., Chua C.K., Zhu L., Wang Z., Xue P., Tan S., Wu Y., Zheng H. Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy. Virtual Phys. Prototyp. 2022;17:406–418. doi: 10.1080/17452759.2021.1990358. DOI
Chen H., Gu D., Deng L., Lu T., Kühn U., Kosiba K. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure. J. Mater. Sci. Technol. 2021;89:242–252. doi: 10.1016/j.jmst.2020.04.011. DOI
Romano S., Nezhadfar P., Shamsaei N., Seifi M., Beretta S. High cycle fatigue behavior and life prediction for additively manufactured 17-4 PH stainless steel: Effect of sub-surface porosity and surface roughness. Theor. Appl. Fract. Mech. 2020;106:102477. doi: 10.1016/j.tafmec.2020.102477. DOI
Li S., Wei Q., Shi Y., Zhu Z., Zhang D. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J. Mater. Sci. Technol. 2015;31:946–952. doi: 10.1016/j.jmst.2014.09.020. DOI
Fergani O., Berto F., Welo T., Liang S.Y. Analytical modelling of residual stress in additive manufacturing. Fatigue Fract. Eng. Mater. Struct. 2017;40:971–978. doi: 10.1111/ffe.12560. DOI
Slotwinski J.A., Garboczi E.J., Hebenstreit K.M. Porosity measurements and analysis for metal additive manufacturing process control. J. Res. Natl. Inst. Stand. Technol. 2014;119:494–528. doi: 10.6028/jres.119.019. PubMed DOI PMC
Dai T., Jia X.-J., Zhang J., Wu J.-F., Sun Y.-W., Yuan S.-X., Ma G.-B., Xiong X.-J., Ding H. Laser ultrasonic testing for near-surface defects inspection of 316L stainless steel fabricated by laser powder bed fusion. China Foundry. 2021;18:360–368. doi: 10.1007/s41230-021-1063-1. DOI
Zhan Y., Liu C., Zhang J.J., Mo G.Z., Liu C.S. Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique. Mater. Sci. Eng. A. 2019;762:138093. doi: 10.1016/j.msea.2019.138093. DOI
Ito K., Kusano M., Demura M., Watanabe M. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement. Addit. Manuf. 2021;40:101915. doi: 10.1016/j.addma.2021.101915. DOI
Biddle C.C. Theory of Eddy Currents for Nondestructive Testing. Retrosp. Theses Diss. 1976;201:1–84.
He Y., Luo F., Pan M., Weng F., Hu X., Gao J., Liu B. Pulsed eddy current technique for defect detection in aircraft riveted structures. NDT E Int. 2010;43:176–181. doi: 10.1016/j.ndteint.2009.10.010. DOI
Förster F. Sensitive eddy-current testing of tubes for defects on the inner and outer surfaces. Non-Destr. Test. 1974;7:28–36. doi: 10.1016/0029-1021(74)90023-1. DOI
Fukutomi H., Huang H., Takagi T., Tani J. Identification of crack depths from eddy current testing signal. IEEE Trans. Magn. 1998;34:2893–2896. doi: 10.1109/20.717674. DOI
Bowler N., Huang Y. Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Meas. Sci. Technol. 2005;16:2193–2200. doi: 10.1088/0957-0233/16/11/009. DOI
Wang Z., Yu Y. Thickness and conductivity measurement of multilayered electricity-conducting coating by pulsed eddy current technique: Experimental investigation. IEEE Trans. Instrum. Meas. 2018;68:3166–3172. doi: 10.1109/TIM.2018.2872386. DOI
Abdou A., Bouchala T., Abdelhadi B., Guettafi A., Benoudjit A. Nondestructive Eddy Current Measurement of Coating Thickness of Aeronautical Construction Materials. Instrum. Mes. Métrol. 2019;18:451–457. doi: 10.18280/i2m.180504. DOI
Ricken W., Liu J., Becker W.J. GMR and eddy current sensor in use of stress measurement. Sens. Actuators A Phys. 2001;91:42–45. doi: 10.1016/S0924-4247(01)00479-4. DOI
Botko F., Zajac J., Czan A., Radchenko S., Lehocka D., Duplak J. Influence of residual stress induced in steel material on Eddy currents response parameters; Proceedings of the International Scientific-Technical Conference MANUFACTURING; Poznan, Poland. 19–22 May 2019.
García-Martín J., Gómez-Gil J., Vázquez-Sánchez E. Non-destructive techniques based on eddy current testing. Sensors. 2011;11:2525–2565. doi: 10.3390/s110302525. PubMed DOI PMC
Du W., Bai Q., Wang Y., Zhang B. Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing. Int. J. Adv. Manuf. Technol. 2018;95:3185–3195. doi: 10.1007/s00170-017-1354-2. DOI
Guo S., Ren G., Zhang B. Subsurface Defect Evaluation of Selective-Laser-Melted Inconel 738LC Alloy Using Eddy Current Testing for Additive/Subtractive Hybrid Manufacturing. Chin. J. Mech. Eng. 2021;34:111. doi: 10.1186/s10033-021-00633-9. DOI
Obaton A.-F., Lê M.-Q., Prezza V., Marlot D., Delvart P., Huskic A., Senck S., Mahé E., Cayron C. Investigation of new volumetric non-destructive techniques to characterise additive manufacturing parts. Weld. World. 2018;62:1049–1057. doi: 10.1007/s40194-018-0593-7. DOI
Kobayashi N., Yamamoto S., Sugawara A., Nakane M., Tsuji D., Hino T., Terada T., Ochiai M. Fundamental experiments of eddy current testing for additive manufacturing metallic material toward in-process inspection. AIP Conf. Proc. 2019;2102:070003.
Özer G., Tarakçi G., Yilmaz M.S., Öter Z.Ç., Sürmen Ö., Akça Y., Coşkun M., Koç E. Investigation of the effects of different heat treatment parameters on the corrosion and mechanical properties of the AlSi10Mg alloy produced with direct metal laser sintering. Mater. Corros. 2020;71:365–373. doi: 10.1002/maco.201911171. DOI
Ehlers H., Pelkner M., Thewes R. Heterodyne eddy current testing using magnetoresistive sensors for additive manufacturing purposes. IEEE Sens. J. 2020;20:5793–5800. doi: 10.1109/JSEN.2020.2973547. DOI
Duarte V.R., Rodrigues T.A., Machado M.A., Pragana J.P., Pombinha P., Coutinho L., Silva C.M., Miranda R.M., Goodwin C., Huber D.E., et al. Benchmarking of nondestructive testing for additive manufacturing. 3d Print. Addit. Manuf. 2021;8:263–270. doi: 10.1089/3dp.2020.0204. PubMed DOI PMC
Stoll P., Gasparin E., Spierings A., Wegener K. Embedding eddy current sensors into LPBF components for structural health monitoring. Prog. Addit. Manuf. 2021;6:445–453. doi: 10.1007/s40964-021-00204-3. DOI
E Farag H., Toyserkani E., Khamesee M.B. Non-Destructive Testing Using Eddy Current Sensors for Defect Detection in Additively Manufactured Titanium and Stainless-Steel Parts. Sensors. 2022;22:5440. doi: 10.3390/s22145440. PubMed DOI PMC
D’Accardi E., Krankenhagen R., Ulbricht A., Pelkner M., Pohl R., Palumbo D., Galietti U. Capability to detect and localize typical defects of laser powder bed fusion (L-PBF) process: An experimental investigation with different non-destructive techniques. Prog. Addit. Manuf. 2022:1–18. doi: 10.1007/s40964-022-00297-4. DOI
Center of 3D Printing Protolab. [(accessed on 3 August 2022)]. Available online: https://protolab.cz.
Data Sheet: SS 316L-0407 Powder for Additive Manufacturing. [(accessed on 3 August 2022)]. Available online: https://www.renishaw.com/resourcecentre/en/details/data-sheet-ss-316l-0407-powder-for-additive-manufacturing--90802.
NORTEC 600 Eddy Current Flaw Detector User’s Manual. [(accessed on 3 August 2022)]. Available online: https://manualzz.com/doc/59581713/olympus-nortec-600-user-manual.
AISI Type 316L Stainless Steel. [(accessed on 3 August 2022)]. Available online: https://www.matweb.com/search/DataSheet.aspx?MatGUID=a2d0107bf958442e9f8db6dc9933fe31.
304 Stainless Steel. [(accessed on 3 August 2022)]. Available online: https://www.matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da.
Aluminum 7075-T6. [(accessed on 3 August 2022)]. Available online: https://www.matweb.com/search/DataSheet.aspx?MatGUID=4f19a42be94546b686bbf43f79c51b7d.