Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DE-AC02-05CH11231
U.S. Department of Energy (DOE)
646807-EXMAG
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
21K13884
MEXT | Japan Society for the Promotion of Science (JSPS)
SE1441/5-2
Deutsche Forschungsgemeinschaft (German Research Foundation)
CRC 1143
Deutsche Forschungsgemeinschaft (German Research Foundation)
291763
EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
PubMed
36253344
PubMed Central
PMC9576770
DOI
10.1038/s41467-022-33468-6
PII: 10.1038/s41467-022-33468-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.
Advanced Light Source Lawrence Berkeley Laboratory Berkeley CA 94720 USA
ALBA Synchrotron Light Source E 08290 Cerdanyola del Vallès Barcelona Spain
Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Department of Physics and Astronomy University of California Irvine CA 92697 USA
European Synchrotron Radiation Facility BP 220 F 38043 Grenoble Cedex France
Helmholtz Zentrum Berlin Bessy 2 D 12489 Berlin Germany
Institute for Advanced Studies Technische Universität München D 85748 Garching Germany
Institute for Solid State Physics TU Wien 1040 Vienna Austria
Institute of Physics 2 University of Cologne Cologne Germany
Institute of Physics of the CAS Cukrovarnická 10 162 00 Praha 6 Czechia
Laboratory for Neutron and Muon Instrumentation Paul Scherrer Institute CH 5232 Villigen Switzerland
Los Alamos National Laboratory Los Alamos NM 87545 USA
Max Planck Institute for Chemical Physics of Solids Dresden Germany
Oak Ridge National Laboratory Oak Ridge TN 37831 USA
Physik Department Technische Universität München D 85748 Garching Germany
Physik Institut Universität Zürich Winterthurerstrasse 190 CH 8057 Zürich Switzerland
Zobrazit více v PubMed
Paschen S, Si Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 2021;3:9–26. doi: 10.1038/s42254-020-00262-6. DOI
Lawrence JM. Intermediate valence metals. Mod. Phys. Lett. B. 2008;22:1273–1295. doi: 10.1142/S0217984908016042. DOI
Burdin S, Georges A, Grempel DR. Coherence scale of the Kondo lattice. Phys. Rev. Lett. 2000;85:1048–1051. doi: 10.1103/PhysRevLett.85.1048. PubMed DOI
Jang S, et al. Evolution of the Kondo lattice electronic structure above the transport coherence temperature. Proc. Natl Acad. Sci. USA. 2020;117:23467–23476. doi: 10.1073/pnas.2001778117. PubMed DOI PMC
Aynajian P, et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature. 2012;486:201–206. doi: 10.1038/nature11204. PubMed DOI
Goremychkin EA, et al. Coherent band excitations in CePd3: a comparison of neutron scattering and ab initio theory. Science. 2018;359:186–191. doi: 10.1126/science.aan0593. PubMed DOI
Fobes DM, et al. Tunable emergent heterostructures in a prototypical correlated metal. Nat. Phys. 2018;14:456–460. doi: 10.1038/s41567-018-0060-9. DOI
Pfleiderer C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 2009;81:1551–1624. doi: 10.1103/RevModPhys.81.1551. DOI
Mydosh JA, Oppeneer PM, Riseborough PS. Hidden order and beyond: an experimental—theoretical overview of the multifaceted behavior of URu2Si2. J. Phys. Condens. Matter. 2020;32:143002. doi: 10.1088/1361-648X/ab5eba. PubMed DOI
Pirie H, et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 2020;16:52–56. doi: 10.1038/s41567-019-0700-8. DOI
Kurumaji T, et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science. 2019;365:914–918. doi: 10.1126/science.aau0968. PubMed DOI
Jiao L, et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature. 2020;579:523–527. doi: 10.1038/s41586-020-2122-2. PubMed DOI
Ronning F, et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature. 2017;548:313–317. doi: 10.1038/nature23315. PubMed DOI
Seo S, et al. Nematic state in CeAuSb2. Phys. Rev. X. 2020;10:011035.
Pagliuso P, et al. Structurally tuned superconductivity in heavy-fermion CeMIn5 (M = Co, Ir, Rh) Phys. B: Condens. Matter. 2002;320:370–375. doi: 10.1016/S0921-4526(02)00751-2. DOI
Willers T, et al. Correlation between ground state and orbital anisotropy in heavy fermion materials. Proc. Natl Acad. Sci. USA. 2015;112:2384–2388. doi: 10.1073/pnas.1415657112. PubMed DOI PMC
Moll PJW, et al. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3. npj Quant. Mater. 2017;2:46. doi: 10.1038/s41535-017-0052-5. DOI
Rosa PFS, et al. Enhanced hybridization sets the stage for electronic nematicity in CeRhIn5. Phys. Rev. Lett. 2019;122:016402. doi: 10.1103/PhysRevLett.122.016402. PubMed DOI
Shim JH, Haule K, Kotliar G. Modeling the localized-to-itinerant electronic transition in the heavy fermion system CeIrIn5. Science. 2007;318:1615–1617. doi: 10.1126/science.1149064. PubMed DOI
Haule K, Yee C-H, Kim K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B. 2010;81:195107. doi: 10.1103/PhysRevB.81.195107. DOI
Patil S, et al. Arpes view on surface and bulk hybridization phenomena in the antiferromagnetic kondo lattice CeRh2Si2. Nat. Commun. 2016;7:11029. doi: 10.1038/ncomms11029. PubMed DOI PMC
Kummer K, et al. Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2. Phys. Rev. X. 2015;5:1–9.
Murani AP, Raphel R, Bowden ZA, Eccleston RS. Kondo resonance energies in CePd3. Phys. Rev. B. 1996;53:8188–8191. doi: 10.1103/PhysRevB.53.8188. PubMed DOI
Hancock JN, et al. Kondo lattice excitation observed using resonant inelastic x-ray scattering at the Yb M5 edge. Phys. Rev. B. 2018;98:075158. doi: 10.1103/PhysRevB.98.075158. DOI
Amorese A, et al. Crystal electric field in CeRh2Si2 studied with high-resolution resonant inelastic soft x-ray scattering. Phys. Rev. B. 2018;97:245130. doi: 10.1103/PhysRevB.97.245130. DOI
Fanelli VR, et al. Q-dependence of the spin fluctuations in the intermediate valence compound CePd3. J. Phys.: Condens. Matter. 2014;26:225602. PubMed
Lawrence JM, Thompson JD, Chen YY. Two energy scales in CePd3. Phys. Rev. Lett. 1985;54:2537–2540. doi: 10.1103/PhysRevLett.54.2537. PubMed DOI
Knafo W, et al. Study of low-energy magnetic excitations in single-crystalline CeIn3 by inelastic neutron scattering. J. Phys. Condens. Matter. 2003;15:3741–3749. doi: 10.1088/0953-8984/15/22/308. DOI
Thalmeier P. Bound state of phonons and a crystal field excitation in CeAl2. J. Appl. Phys. 1984;55:1916–1920. doi: 10.1063/1.333518. DOI
Sundermann M, et al. The quartet ground state in CeB6: an inelastic x-ray scattering study. Europhys. Lett. 2017;117:17003. doi: 10.1209/0295-5075/117/17003. DOI
Supplemental Information available online at 10.1038/s41467-022-33468-6.
Murani AP, Reske J, Ivanov AS, Palleau P. Evolution of the spin-orbit excitation across the gamma-alpha transition in Ce. Phys. Rev. B. 2002;65:094416. doi: 10.1103/PhysRevB.65.094416. DOI
Dvorak J, Jarrige I, Bisogni V, Coburn S, Leonhardt W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 2016;87:115109. doi: 10.1063/1.4964847. PubMed DOI
Brookes N, et al. The beamline ID32 at the ESRF for soft x-ray high energy resolution resonant inelastic x-ray scattering and polarisation dependent x-ray absorption spectroscopy. Nucl. Instrum. Methods. Phys. Res. B. 2018;903:175–192. doi: 10.1016/j.nima.2018.07.001. DOI
Kummer K, et al. RixsToolBox: software for the analysis of soft X-ray RIXS data acquired with 2D detectors. J. Synchrotron Radiat. 2017;24:531–536. doi: 10.1107/S1600577517000832. PubMed DOI
Braicovich L, et al. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering. Rev. Sci. Instrum. 2014;85:115104. doi: 10.1063/1.4900959. PubMed DOI
Bickers NE. Review of techniques in the large-N expansion for dilute magnetic alloys. Rev. Mod. Phys. 1987;59:845. doi: 10.1103/RevModPhys.59.845. PubMed DOI
Lawrence JM, et al. Slow crossover in YbXCu4 (X = Ag, Cd, In, Mg, Tl, Zn) intermediate-valence compounds. Phys. Rev. B. 2001;63:054427. doi: 10.1103/PhysRevB.63.054427. DOI
Blaha, P. et al. An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018).
Blaha P, et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020;152:074101. doi: 10.1063/1.5143061. PubMed DOI
Werner P, Comanac A, de’ Medici L, Troyer M, Millis AJ. Continuous-time solver for quantum impurity models. Phys. Rev. Lett. 2006;97:076405. doi: 10.1103/PhysRevLett.97.076405. PubMed DOI
Boehnke L, Hafermann H, Ferrero M, Lechermann F, Parcollet O. Orthogonal polynomial representation of imaginary-time Green’s functions. Phys. Rev. B. 2011;84:075145. doi: 10.1103/PhysRevB.84.075145. DOI
Hafermann H, Patton KR, Werner P. Improved estimators for the self-energy and vertex function in hybridization-expansion continuous-time quantum Monte Carlo simulations. Phys. Rev. B. 2012;85:205106. doi: 10.1103/PhysRevB.85.205106. DOI
Hariki A, Yamanaka A, Uozumi T. Theory of spin-state selective nonlocal screening in Co 2p x-ray photoemission spectrum of LaCoO3. J. Phys. Soc. Japan. 2015;84:073706. doi: 10.7566/JPSJ.84.073706. DOI
Malterre D, Grioni M, Weibel P, Dardel B, Baer Y. Evidence of a Kondo scale from the temperature dependence of inverse photoemission spectroscopy of CePd3. Phys. Rev. Lett. 1992;68:2656–2659. doi: 10.1103/PhysRevLett.68.2656. PubMed DOI
Souma S, Kumigashira H, Ito T, Takahashi T, Kasaya M. Ultrahigh-resolution photoemission study of CePd3: absence of Kondo insulator gap. J. Electron Spectrosc. Relat. Phenom. 2001;114-116:735 – 740. doi: 10.1016/S0368-2048(00)00386-8. DOI
Hariki A, Winder M, Uozumi T, Kuneš J. LDA + DMFT approach to resonant inelastic x-ray scattering in correlated materials. Phys. Rev. B. 2020;101:115130. doi: 10.1103/PhysRevB.101.115130. DOI