Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering

. 2022 Oct 17 ; 13 (1) : 6129. [epub] 20221017

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36253344

Grantová podpora
DE-AC02-05CH11231 U.S. Department of Energy (DOE)
646807-EXMAG EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
21K13884 MEXT | Japan Society for the Promotion of Science (JSPS)
SE1441/5-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
CRC 1143 Deutsche Forschungsgemeinschaft (German Research Foundation)
291763 EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))

Odkazy

PubMed 36253344
PubMed Central PMC9576770
DOI 10.1038/s41467-022-33468-6
PII: 10.1038/s41467-022-33468-6
Knihovny.cz E-zdroje

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

Advanced Light Source Lawrence Berkeley Laboratory Berkeley CA 94720 USA

ALBA Synchrotron Light Source E 08290 Cerdanyola del Vallès Barcelona Spain

Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Department of Physics and Astronomy University of California Irvine CA 92697 USA

Department of Physics and Electronics Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599 8531 Japan

European Synchrotron Radiation Facility BP 220 F 38043 Grenoble Cedex France

Helmholtz Zentrum Berlin Bessy 2 D 12489 Berlin Germany

Institute for Advanced Studies Technische Universität München D 85748 Garching Germany

Institute for Solid State and Materials Physics Technical University of Dresden 01062 Dresden Germany

Institute for Solid State Physics TU Wien 1040 Vienna Austria

Institute of Physics 2 University of Cologne Cologne Germany

Institute of Physics of the CAS Cukrovarnická 10 162 00 Praha 6 Czechia

Laboratory for Neutron and Muon Instrumentation Paul Scherrer Institute CH 5232 Villigen Switzerland

Los Alamos National Laboratory Los Alamos NM 87545 USA

Max Planck Institute for Chemical Physics of Solids Dresden Germany

Oak Ridge National Laboratory Oak Ridge TN 37831 USA

Physik Department Technische Universität München D 85748 Garching Germany

Physik Institut Universität Zürich Winterthurerstrasse 190 CH 8057 Zürich Switzerland

Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

Zobrazit více v PubMed

Paschen S, Si Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 2021;3:9–26. doi: 10.1038/s42254-020-00262-6. DOI

Lawrence JM. Intermediate valence metals. Mod. Phys. Lett. B. 2008;22:1273–1295. doi: 10.1142/S0217984908016042. DOI

Burdin S, Georges A, Grempel DR. Coherence scale of the Kondo lattice. Phys. Rev. Lett. 2000;85:1048–1051. doi: 10.1103/PhysRevLett.85.1048. PubMed DOI

Jang S, et al. Evolution of the Kondo lattice electronic structure above the transport coherence temperature. Proc. Natl Acad. Sci. USA. 2020;117:23467–23476. doi: 10.1073/pnas.2001778117. PubMed DOI PMC

Aynajian P, et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature. 2012;486:201–206. doi: 10.1038/nature11204. PubMed DOI

Goremychkin EA, et al. Coherent band excitations in CePd3: a comparison of neutron scattering and ab initio theory. Science. 2018;359:186–191. doi: 10.1126/science.aan0593. PubMed DOI

Fobes DM, et al. Tunable emergent heterostructures in a prototypical correlated metal. Nat. Phys. 2018;14:456–460. doi: 10.1038/s41567-018-0060-9. DOI

Pfleiderer C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 2009;81:1551–1624. doi: 10.1103/RevModPhys.81.1551. DOI

Mydosh JA, Oppeneer PM, Riseborough PS. Hidden order and beyond: an experimental—theoretical overview of the multifaceted behavior of URu2Si2. J. Phys. Condens. Matter. 2020;32:143002. doi: 10.1088/1361-648X/ab5eba. PubMed DOI

Pirie H, et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 2020;16:52–56. doi: 10.1038/s41567-019-0700-8. DOI

Kurumaji T, et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science. 2019;365:914–918. doi: 10.1126/science.aau0968. PubMed DOI

Jiao L, et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature. 2020;579:523–527. doi: 10.1038/s41586-020-2122-2. PubMed DOI

Ronning F, et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature. 2017;548:313–317. doi: 10.1038/nature23315. PubMed DOI

Seo S, et al. Nematic state in CeAuSb2. Phys. Rev. X. 2020;10:011035.

Pagliuso P, et al. Structurally tuned superconductivity in heavy-fermion CeMIn5 (M = Co, Ir, Rh) Phys. B: Condens. Matter. 2002;320:370–375. doi: 10.1016/S0921-4526(02)00751-2. DOI

Willers T, et al. Correlation between ground state and orbital anisotropy in heavy fermion materials. Proc. Natl Acad. Sci. USA. 2015;112:2384–2388. doi: 10.1073/pnas.1415657112. PubMed DOI PMC

Moll PJW, et al. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3. npj Quant. Mater. 2017;2:46. doi: 10.1038/s41535-017-0052-5. DOI

Rosa PFS, et al. Enhanced hybridization sets the stage for electronic nematicity in CeRhIn5. Phys. Rev. Lett. 2019;122:016402. doi: 10.1103/PhysRevLett.122.016402. PubMed DOI

Shim JH, Haule K, Kotliar G. Modeling the localized-to-itinerant electronic transition in the heavy fermion system CeIrIn5. Science. 2007;318:1615–1617. doi: 10.1126/science.1149064. PubMed DOI

Haule K, Yee C-H, Kim K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B. 2010;81:195107. doi: 10.1103/PhysRevB.81.195107. DOI

Patil S, et al. Arpes view on surface and bulk hybridization phenomena in the antiferromagnetic kondo lattice CeRh2Si2. Nat. Commun. 2016;7:11029. doi: 10.1038/ncomms11029. PubMed DOI PMC

Kummer K, et al. Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2. Phys. Rev. X. 2015;5:1–9.

Murani AP, Raphel R, Bowden ZA, Eccleston RS. Kondo resonance energies in CePd3. Phys. Rev. B. 1996;53:8188–8191. doi: 10.1103/PhysRevB.53.8188. PubMed DOI

Hancock JN, et al. Kondo lattice excitation observed using resonant inelastic x-ray scattering at the Yb M5 edge. Phys. Rev. B. 2018;98:075158. doi: 10.1103/PhysRevB.98.075158. DOI

Amorese A, et al. Crystal electric field in CeRh2Si2 studied with high-resolution resonant inelastic soft x-ray scattering. Phys. Rev. B. 2018;97:245130. doi: 10.1103/PhysRevB.97.245130. DOI

Fanelli VR, et al. Q-dependence of the spin fluctuations in the intermediate valence compound CePd3. J. Phys.: Condens. Matter. 2014;26:225602. PubMed

Lawrence JM, Thompson JD, Chen YY. Two energy scales in CePd3. Phys. Rev. Lett. 1985;54:2537–2540. doi: 10.1103/PhysRevLett.54.2537. PubMed DOI

Knafo W, et al. Study of low-energy magnetic excitations in single-crystalline CeIn3 by inelastic neutron scattering. J. Phys. Condens. Matter. 2003;15:3741–3749. doi: 10.1088/0953-8984/15/22/308. DOI

Thalmeier P. Bound state of phonons and a crystal field excitation in CeAl2. J. Appl. Phys. 1984;55:1916–1920. doi: 10.1063/1.333518. DOI

Sundermann M, et al. The quartet ground state in CeB6: an inelastic x-ray scattering study. Europhys. Lett. 2017;117:17003. doi: 10.1209/0295-5075/117/17003. DOI

Supplemental Information available online at 10.1038/s41467-022-33468-6.

Murani AP, Reske J, Ivanov AS, Palleau P. Evolution of the spin-orbit excitation across the gamma-alpha transition in Ce. Phys. Rev. B. 2002;65:094416. doi: 10.1103/PhysRevB.65.094416. DOI

Dvorak J, Jarrige I, Bisogni V, Coburn S, Leonhardt W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 2016;87:115109. doi: 10.1063/1.4964847. PubMed DOI

Brookes N, et al. The beamline ID32 at the ESRF for soft x-ray high energy resolution resonant inelastic x-ray scattering and polarisation dependent x-ray absorption spectroscopy. Nucl. Instrum. Methods. Phys. Res. B. 2018;903:175–192. doi: 10.1016/j.nima.2018.07.001. DOI

Kummer K, et al. RixsToolBox: software for the analysis of soft X-ray RIXS data acquired with 2D detectors. J. Synchrotron Radiat. 2017;24:531–536. doi: 10.1107/S1600577517000832. PubMed DOI

Braicovich L, et al. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering. Rev. Sci. Instrum. 2014;85:115104. doi: 10.1063/1.4900959. PubMed DOI

Bickers NE. Review of techniques in the large-N expansion for dilute magnetic alloys. Rev. Mod. Phys. 1987;59:845. doi: 10.1103/RevModPhys.59.845. PubMed DOI

Lawrence JM, et al. Slow crossover in YbXCu4 (X = Ag, Cd, In, Mg, Tl, Zn) intermediate-valence compounds. Phys. Rev. B. 2001;63:054427. doi: 10.1103/PhysRevB.63.054427. DOI

Blaha, P. et al. An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018).

Blaha P, et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020;152:074101. doi: 10.1063/1.5143061. PubMed DOI

Werner P, Comanac A, de’ Medici L, Troyer M, Millis AJ. Continuous-time solver for quantum impurity models. Phys. Rev. Lett. 2006;97:076405. doi: 10.1103/PhysRevLett.97.076405. PubMed DOI

Boehnke L, Hafermann H, Ferrero M, Lechermann F, Parcollet O. Orthogonal polynomial representation of imaginary-time Green’s functions. Phys. Rev. B. 2011;84:075145. doi: 10.1103/PhysRevB.84.075145. DOI

Hafermann H, Patton KR, Werner P. Improved estimators for the self-energy and vertex function in hybridization-expansion continuous-time quantum Monte Carlo simulations. Phys. Rev. B. 2012;85:205106. doi: 10.1103/PhysRevB.85.205106. DOI

Hariki A, Yamanaka A, Uozumi T. Theory of spin-state selective nonlocal screening in Co 2p x-ray photoemission spectrum of LaCoO3. J. Phys. Soc. Japan. 2015;84:073706. doi: 10.7566/JPSJ.84.073706. DOI

Malterre D, Grioni M, Weibel P, Dardel B, Baer Y. Evidence of a Kondo scale from the temperature dependence of inverse photoemission spectroscopy of CePd3. Phys. Rev. Lett. 1992;68:2656–2659. doi: 10.1103/PhysRevLett.68.2656. PubMed DOI

Souma S, Kumigashira H, Ito T, Takahashi T, Kasaya M. Ultrahigh-resolution photoemission study of CePd3: absence of Kondo insulator gap. J. Electron Spectrosc. Relat. Phenom. 2001;114-116:735 – 740. doi: 10.1016/S0368-2048(00)00386-8. DOI

Hariki A, Winder M, Uozumi T, Kuneš J. LDA + DMFT approach to resonant inelastic x-ray scattering in correlated materials. Phys. Rev. B. 2020;101:115130. doi: 10.1103/PhysRevB.101.115130. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...