Hybrid photon-phonon blockade

. 2022 Oct 21 ; 12 (1) : 17655. [epub] 20221021

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36271120

Grantová podpora
DEC-2019/34/A/ST2/00081 Narodowe Centrum Nauki
CZ.02.2.69/0.0/0.0/18_053/0016919 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 36271120
PubMed Central PMC9587303
DOI 10.1038/s41598-022-21267-4
PII: 10.1038/s41598-022-21267-4
Knihovny.cz E-zdroje

We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic and phononic modes. We refer to this effect as hybrid photon-phonon blockade and show how it can be generated and detected in a driven nonlinear optomechanical superconducting system. Thus, we study boson-number correlations in the photon, phonon, and hybrid modes in linearly coupled microwave and mechanical resonators with a superconducting qubit inserted in one of them. We find such system parameters for which we observe eight types of different combinations of either blockade or tunnelling effects (defined via the sub- and super-Poissonian statistics, respectively) for photons, phonons, and hybrid bosons. In particular, we find that the hybrid photon-phonon blockade can be generated by mixing the photonic and phononic modes which do not exhibit blockade.

Zobrazit více v PubMed

Imamoğlu A, Schmidt H, Woods G, Deutsch M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 1997;79:1467–1470.

Miranowicz A, Leoński W, Imoto N. Quantum-optical states in finite-dimensional Hilbert space. I. General formalism. Adv. Chem. Phys. 2001;119(I):155–193.

Leoński W, Miranowicz A. Quantum-optical states in finite-dimensional Hilbert space. II. state generation. Adv. Chem. Phys. 2001;119(I):195–213.

Leoński W, Kowalewska-Kudłaszyk A. Quantum scissors: Finite-dimensional states engineering. Prog. Opt. 2011;56:131–185.

Birnbaum KM, et al. Photon blockade in an optical cavity with one trapped atom. Nature (London) 2005;436:87–90. PubMed

Faraon A, et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 2008;4:859–863.

Lang C, et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 2011;106:243601. PubMed

Hoffman AJ, et al. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 2011;107:053602. PubMed

Reinhard A, et al. Strongly correlated photons on a chip. Nat. Photon. 2011;6:93.

Müller K, et al. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 2015;114:233601. PubMed

Hamsen C, Tolazzi KN, Wilk T, Rempe G. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett. 2017;118:133604. PubMed

Snijders H, et al. Observation of the unconventional photon blockade. Phys. Rev. Lett. 2018;121:043601. PubMed

Vaneph C, et al. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 2018;121:043602. PubMed

Majumdar A, Bajcsy M, Vučković J. Probing the ladder of dressed states and nonclassical light generation in quantum-dot–cavity QED. Phys. Rev. A. 2012;85:041801.

Peyronel T, et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature (London) 2012;488:57–60. PubMed

Dayan B, et al. A photon turnstile dynamically regulated by one atom. Science. 2008;319:1062–1065. PubMed

Tian L, Carmichael HJ. Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A. 1992;46:R6801. PubMed

Leoński W, Tanaś R. Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A. 1994;49:R20–R23. PubMed

Miranowicz A, Leoński W, Dyrting S, Tanaś R. Quantum state engineering in finite-dimensional Hilbert space. Acta Phys. Slov. 1996;46:451.

Paul H. Photon antibunching. Rev. Mod. Phys. 1982;54:1061–1102.

Teich MC, Saleh BEA. Photon bunching and antibunching. Prog. Opt. 1988;26:1–104.

Kozierowski M. Photon antibunching in nonlinear optical phenomena. Kvantovaya Elektron. 1980;6:695.

Michler P. A quantum dot single-photon turnstile device. Science. 2000;290:2282–2285. PubMed

Wang X, Miranowicz A, Li H-R, Nori F. Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings. Phys. Rev. A. 2016;94:053858.

Shamailov S, Parkins A, Collett M, Carmichael H. Multi-photon blockade and dressing of the dressed states. Opt. Commun. 2010;283:766–772.

Miranowicz A, Paprzycka M, Liu Y-X, Bajer J, Nori F. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A. 2013;87:023809.

Chakram, S. et al. Multimode photon blockade. arXiv preprint (2020). arXiv:2010.15292.

Liew TCH, Savona V. Single photons from coupled quantum modes. Phys. Rev. Lett. 2010;104:183601. PubMed

Huang R, Miranowicz A, Liao J-Q, Nori F, Jing H. Nonreciprocal photon blockade. Phys. Rev. Lett. 2018;121:153601. PubMed

Li B, Huang R, Xu X, Miranowicz A, Jing H. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. 2019;7:630.

Yang P, et al. Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity. Phys. Rev. Lett. 2019;123:233604. PubMed

Miranowicz A, et al. State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A. 2014;90:033831.

Huang, R. et al. Exceptional photon blockade: Engineering photon blockade with chiral exceptional points. Laser Photonics Rev.16, 2100430 (2022).

Pegg DT, Phillips LS, Barnett SM. Optical State Truncation by Projection Synthesis. Phys. Rev. Lett. 1998;81:1604–1606.

Özdemir SK, Miranowicz A, Koashi M, Imoto N. Quantum-scissors device for optical state truncation: A proposal for practical realization. Phys. Rev. A. 2001;64:063818.

Özdemir SK, Miranowicz A, Koashi M, Imoto N. Pulse-mode quantum projection synthesis: Effects of mode mismatch on optical state truncation and preparation. Phys. Rev. A. 2002;66:053809.

Babichev SA, Ries J, Lvovsky AI. Quantum scissors: Teleportation of single-mode optical states by means of a nonlocal single photon. EPL (Europhys. Lett.) 2003;64:1–7.

Koniorczyk M, Kurucz Z, Gábris A, Janszky J. General optical state truncation and its teleportation. Phys. Rev. A. 2000;62:013802.

Miranowicz A. Optical-state truncation and teleportation of qudits by conditional eight-port interferometry. J. Opt. B: Quant. Semicl. Opt. 2005;7:142.

Miranowicz A, Paprzycka M, Pathak A, Nori F. Phase-space interference of states optically truncated by quantum scissors. Phys. Rev. A. 2014;89:033812.

Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 1994;73:58–61. PubMed

Miranowicz A, Özdemir SK, Bajer J, Koashi M, Imoto N. Selective truncations of an optical state using projection synthesis. J. Opt. Soc. Am. B. 2007;24:379–383.

Leoński W, Miranowicz A. Kerr nonlinear coupler and entanglement. J. Opt. B. 2004;6:S37–S42.

Miranowicz A, Leoński W. Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers. J. Phys. B. 2006;39:1683–1700.

Bamba M, Imamoğlu A, Carusotto I, Ciuti C. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A. 2011;83:021802.

Flayac H, Savona V. Unconventional photon blockade. Phys. Rev. A. 2017;96:053810. PubMed

Liu Y-X, et al. Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators. Phys. Rev. A. 2010;82:032101.

Didier N, Pugnetti S, Blanter YM, Fazio R. Detecting phonon blockade with photons. Phys. Rev. B. 2011;84:054503.

Wang X, Miranowicz A, Li H-R, Nori F. Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A. 2016;93:063861.

Miranowicz A, Bajer J, Lambert N, Liu Y-X, Nori F. Tunable multiphonon blockade in coupled nanomechanical resonators. Phys. Rev. A. 2016;93:013808.

Shi H-Q, Zhou X-T, Xu X-W, Liu N-H. Tunable phonon blockade in quadratically coupled optomechanical systems. Sci. Rep. 2018;8:2212. PubMed PMC

Liu YX, Xu XW, Miranowicz A, Nori F. From blockade to transparency: Controllable photon transmission through a circuit-QED system. Phys. Rev. A. 2014;89:043818.

Kowalewska-Kudłaszyk A, Abo SI, Chimczak G, Peřina J, Nori F, Miranowicz A. Two-photon blockade and photon-induced tunneling generated by squeezing. Phys. Rev. A. 2019;100:053857.

Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev. Mod. Phys. 2014;86:1391.

Xu X-W, Shi H-Q, Liao J-Q, Chen A-X. Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction. Phys. Rev. A. 2019;100:053802.

Xu X-W, Shi H-Q, Chen A-X, Liu xY. Cross-correlation between photons and phonons in quadratically coupled optomechanical systems. Phys. Rev. A. 2018;98:013821.

Zhai C, Huang R, Jing H, Kuang L-M. Mechanical switch of photon blockade and photon-induced tunneling. Opt. Express. 2019;27:27649. PubMed

Santori C, Pelton M, Solomon G, Dale Y, Yamamoto Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 2001;86:1502. PubMed

Ding X, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 2016;116:020401. PubMed

Grangier P, Walls DF, Gheri KM. Comment on strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 1998;81:2833.

Kimble HJ. Strong interactions of single atoms and photons in cavity QED. Phys. Scripta. 1998;T76:127.

Gu X, Kockum AF, Miranowicz A, Liu Y-X, Nori F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 2017;718–719:1–102.

Tian L. Ground state cooling of a nanomechanical resonator via parametric linear coupling. Phys. Rev. B. 2009;79:193407.

Kockum AF, Miranowicz A, Liberato SD, Savasta S, Nori F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 2019;1:19–40.

Restrepo J, Ciuti C, Favero I. Single-polariton optomechanics. Phys. Rev. Lett. 2014;112:013601. PubMed

Larson J, Mavrogordatos T. The Jaynes–Cummings Model and Its Descendants. IOP Publishing; 2021.

Ridolfo A, Leib M, Savasta S, Hartmann MJ. Photon blockade in the ultrastrong coupling regime. Phys. Rev. Lett. 2012;109:193602. PubMed

Garziano L, et al. Multiphoton quantum rabi oscillations in ultrastrong cavity qed. Phys. Rev. A. 2015;92:063830.

Mercurio, A., Abo, S., Mauceri, F., Russo, E., Macri, V., Miranowicz, A., Savasta, S. & Di Stefano, O. Pure dephasing of light-matter systems in the ultrastrong and deep-strong coupling regimes (2022). arXiv:2205.05352. PubMed

Sánchez Muñoz C, Frisk Kockum A, Miranowicz A, Nori F. Simulating ultrastrong-coupling processes breaking parity conservation in Jaynes-Cummings systems. Phys. Rev. A. 2020;102:033716.

Kuhn A. Cavity Induced Interfacing of Atoms and Light. Springer; 2015.

Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge University Press; 1995.

Kimble HJ, Dagenais M, Mandel L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 1977;39:691.

Verhagen E, Deléglise S, Weis S, Schliesser A, Kippenberg TJ. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 2012;482:63–67. PubMed

Walls DF, Milburn GJ. Quantum Optics. Springer; 1994.

Kubanek A, et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 2008;101:203602. PubMed

Minganti F, Miranowicz A, Chhajlany RW, Nori F. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps. Phys. Rev. A. 2019;100:062131.

Minganti F, Miranowicz A, Chhajlany RW, Arkhipov II, Nori F. Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories. Phys. Rev. A. 2020;101:062112.

Zou XT, Mandel L. Photon-antibunching and sub-Poissonian photon statistics. Phys. Rev. A. 1990;41:475. PubMed

Miranowicz A, Bartkowiak M, Wang X, Liu Y-X, Nori F. Testing nonclassicality in multimode fields: A unified derivation of classical inequalities. Phys. Rev. A. 2010;82:013824.

Hong S, et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science. 2017;358:203–206. PubMed

Shchukin EV, Vogel W. Nonclassical moments and their measurement. Phys. Rev. A. 2005;72:043808.

Shchukin E, Vogel W. Universal measurement of quantum correlations of radiation. Phys. Rev. Lett. 2006;96:200403. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...