Signals of adaptation to agricultural stress in the genomes of two European bumblebees
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36276969
PubMed Central
PMC9579324
DOI
10.3389/fgene.2022.993416
PII: 993416
Knihovny.cz E-zdroje
- Klíčová slova
- Anthropocene, Bombus, RADseq, agricultural intensification, bee decline, global change, population genomics,
- Publikační typ
- časopisecké články MeSH
Human-induced environmental impacts on wildlife are widespread, causing major biodiversity losses. One major threat is agricultural intensification, typically characterised by large areas of monoculture, mechanical tillage, and the use of agrochemicals. Intensification leads to the fragmentation and loss of natural habitats, native vegetation, and nesting and breeding sites. Understanding the adaptability of insects to these changing environmental conditions is critical to predicting their survival. Bumblebees, key pollinators of wild and cultivated plants, are used as model species to assess insect adaptation to anthropogenic stressors. We investigated the effects of agricultural pressures on two common European bumblebees, Bombus pascuorum and B. lapidarius. Restriction-site Associated DNA Sequencing was used to identify loci under selective pressure across agricultural-natural gradients over 97 locations in Europe. 191 unique loci in B. pascuorum and 260 in B. lapidarius were identified as under selective pressure, and associated with agricultural stressors. Further investigation suggested several candidate proteins including several neurodevelopment, muscle, and detoxification proteins, but these have yet to be validated. These results provide insights into agriculture as a stressor for bumblebees, and signal for conservation action in light of ongoing anthropogenic changes.
Agroecology Lab Université Libre de Bruxelles Brussels Belgium
Charles University Faculty of Science Department of Zoology Praha Czech Republic
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Institute for Evolutionary Ecology National Academy of Sciences of Ukraine Kyiv Ukraine
Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
Laboratory of Zoology Research Institute for Biosciences University of Mons Mons Belgium
Zobrazit více v PubMed
Ahrens C. W., Rymer P. D., Stow A., Bragg J., Dillon S., Umbers K. D. L., et al. (2018). The search for loci under selection: Trends, biases and progress. Mol. Ecol. 27, 1342–1356. 10.1111/mec.14549 PubMed DOI
Alford D. V. (1975). Bumblebees. London: Davis-Poynter.
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Anderson N. L., Harmon-Threatt A. N. (2019). Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9, 3724. 10.1038/s41598-019-40031-9 PubMed DOI PMC
Andrews K. R., Gerritsen A., Rashed A., Crowder D. W., Rondon S. I., van Herk W. G., et al. (2020). Wireworm (Coleoptera: Elateridae) genomic analysis reveals putative cryptic species, population structure, and adaptation to pest control. Commun. Biol. 3, 489. 10.1038/s42003-020-01169-9 PubMed DOI PMC
Andrews K. R., Good J. M., Miller M. R., Luikart G., Hohenlohe P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92. 10.1038/nrg.2015.28 PubMed DOI PMC
Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry M. J., et al. (2000). Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29. 10.1038/75556 PubMed DOI PMC
Baird N. A., Etter P. D., Atwood T. S., Currey M. C., Shiver A. L., Lewis Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD Markers. PLoS ONE 3, e3376. 10.1371/journal.pone.0003376 PubMed DOI PMC
Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 (1), 289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI
Biella P., Ćetković A., Gogala A., Neumayer J., Sárospatakis M., Šima P., et al. (2020). North-westward range expansion of the bumblebee Bombus haematurus into Central Europe is associated with warmer winters and niche conservatism. Insect Sci. 28, 861–872. 10.1111/1744-7917.12800 PubMed DOI
Bivand R., Keitt T., Rowlingson B. (2021). rgdal: Bindings for the ‘Geospatial’ data abstraction library. R package version 1.5-23. Available at: https://CRAN.R-project.org/package=rgdal .
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Cameron S. A., Lozier J. D., Strange J. P., Koch J. B., Cordes N., Solter L. F., et al. (2011). Patterns of widespread decline in North American bumblebees. Proc. Natl. Acad. Sci. U. S. A. 108, 662–667. 10.1073/pnas.1014743108 PubMed DOI PMC
Cameron S. A., Sadd B. M. (2020). Global trends in bumblebee health. Annu. Rev. Entomol. 69, 209–232. 10.1146/annurev-ento-011118-111847 PubMed DOI
Cameron S., Hines H. M., Williams P. H. (2007). A comprehensive phylogeny of the bumble bees (Bombus). Biol. J. Linn. Soc. Lond. 91, 161–188. 10.1111/j.1095-8312.2007.00784.x DOI
Catchen J., Hohenlohe P. A., Bassham S., Amores A., Cresko W. A. (2013). Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140. 10.1111/mec.12354 PubMed DOI PMC
Chapman S., Watson J. E. M., Salazar A., Thatcher M., McAlpine C. A. (2017). The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 32, 1921–1935. 10.1007/s10980-017-0561-4 DOI
Charif D., Lobry J. (2007). “SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis,” in Structural approaches to sequence evolution: Molecules, networks, populations, series biological and medical physics, biomedical engineering. Editors Bastolla U., Porto M., Roman H., Vendruscolo M. (New York: Springer-Verlag; ), 207–232. 978-3-540-35305-8, 2007).
Crutzen P., Stoermer E. F. (2000). The "Anthropocene. IGBP Newsl. 41, 17–18. Available at: http://www.igbp.net/download/18.316f18321323470177580001401/1376383088452/NL41.pdf#page=17 .
Danacek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC
Davey J. W., Hohenlohe P. A., Etter P. D., Boone J. Q., Catchen J. M., Blaxter M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510. 10.1038/nrg3012 PubMed DOI
de Villemereuil P., Frichot É., Bazin É., François O., Gaggiotti O. E. (2014). Genome scan methods against more complex models: When and how much should we trust them? Mol. Ecol. 23, 2006–2019. 10.1111/mec.12705 PubMed DOI
de Villemereuil P., Gaggiotti O. E. (2015). A new FST-based method to uncover local adaptation using environmental variables. Methods Ecol. Evol. 6, 1248–1258. 10.1111/2041-210X.12418 DOI
Derst C., Walther C., Veh R. W., Wicher D., Heinemann S. H. (2006). Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE. Biochem. Biophys. Res. Commun. 339, 939–948. 10.1016/j.bbrc.2005.11.096 PubMed DOI
Dirzo R., Young H. S., Galetti M., Ceballos G., Isaac N. J. B., Collen B. (2014). Defaunation in the Anthropocene. Science 345, 401–406. 10.1126/science.1251817 PubMed DOI
Dowel M., Srinivasan A. (2021). data.table: Extension of `data.frame`. R package version 1.14.0. Available at: https://CRAN.R-project.org/package=data.table .
Dray S., Dufour A. (2007). The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22 (4), 1–20. 10.18637/jss.v022.i04 DOI
Dreier S., Redhead J. W., Warren I. A., Bourke A. F. G., Heard M. S., Jordan W. C., et al. (2014). Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape. Mol. Ecol. 23, 3384–3395. 10.1111/mec.12823 PubMed DOI PMC
Foll M., Gaggiotti O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A bayesian perspective. Genetics 180, 977–993. 10.1534/genetics.108.092221 PubMed DOI PMC
Fortel L., Henry M., Guilbaud L., Guirao A. L., Kuhlmann M., Mouret H., et al. (2014). Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9 (8), e104679. 10.1371/journal.pone.0104679 PubMed DOI PMC
François O., Martins H., Caye K., Schoville S. D. (2016). Controlling false discoveries in genome scans for selection. Mol. Ecol. 25, 454–469. 10.1111/mec.13513 PubMed DOI
Frichot E., François O. (2015). Lea: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929. 10.1111/2041-210X.12382 DOI
Garibaldi L. A., Steffan-Dewenter I., Winfree R., Aizen M. A., BommarcoCunningham S. A., et al. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. 10.1126/science.1230200 PubMed DOI
Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788. 10.1093/nar/gkg563 PubMed DOI PMC
Gérard M., Marshal L., Martinet B., Michez D. (2021). Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography 44 (2), 255–264. 10.1111/ecog.05310 DOI
Gérard M., Martinet B., Maebe K., Marshall L., Smagghe G., Vereecken N. J., et al. (2020). Shift in size of bumblebee queens over the last century. Glob. Chang. Biol. 26, 1185–1195. 10.1111/gcb.14890 PubMed DOI
Ghisbain G., Gérard M., Wood T. J., Hines H. M., Michez D. (2021). Expanding insect pollinators in the Anthropocene. Biol. Rev. Camb. Philos. Soc. 96, 2755–2770. 10.1111/brv.12777 PubMed DOI PMC
Goulson D. (2010). Bumblebees: Their behaviour and ecology. 2nd edition. Oxford: Oxford University Press.
Goulson D., Hanley M. E., Darvill B., Ellis J. S., Knight M. E. (2005). Causes of rarity in bumblebees. Biol. Conserv. 122, 1–8. 10.1016/j.biocon.2004.06.017 DOI
Goulson D., Lye G. C., Darvill B. (2008). Decline and conservation of bumblebees. Annu. Rev. Entomol. 53, 191–208. 10.1146/annurev.ento.53.103106.093454 PubMed DOI
Goulson D., Nicholls E., Botías C., Rotheray E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229), 1255957. 10.1126/science.1255957 PubMed DOI
Graystock P., Yates K., Evison S., Darvill B., Goulson D., Hughes W. (2013). The trojan hives: Pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215. 10.1111/1365-2664.12134 DOI
Grubisic M., van Grunsven R., Kyba C., Manfrin A., Hölker F. (2018). Insect declines and agroecosystems: Does light pollution matter? Ann. Appl. Biol. 173, 180–189. 10.1111/aab.12440 DOI
Gunstone T., Cornelisse T., Klein K., Dubey A., Donley N. (2021). Pesticides and soil invertebrates: A hazard assessment. Front. Environ. Sci. 9, 643847. 10.3389/fenvs.2021.643847 DOI
Gutenkunst R., Hernandes R., Williamson S., Bustamante C. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5 (10), e1000695. 10.1371/journal.pgen.1000695 PubMed DOI PMC
Hereward J. P., Walter G. H., DeBarro A. J., Lowe A. J., Riginos C. (2013). Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species. Ecol. Evol. 3, 807–821. 10.1002/ece3.510 PubMed DOI PMC
Hijmans R. J. (2019). geosphere: Spherical trigonometry. R package version 1.5-10. Available at: https://CRAN.R-project.org/package=geosphere .
Hijmans R. J. (2020). raster: Geographic data analysis and modeling. R package version 3.4-13 Available at: https://CRAN.R-project.org/package=raster .
Hladun K. R., Parker D. R., Trumble J. T. (2015). Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: Implications for plant performance and pollination. J. Chem. Ecol. 41, 386–395. 10.1007/s10886-015-0569-7 PubMed DOI
Hunt R. C., Simhadri V. L., Iandoli M., Sauna Z. E., Kimchi-Sarfaty C. (2014). Exposing synonymous mutations. Trends Genet. 30, 308–321. 10.1016/j.tig.2014.04.006 PubMed DOI
Jackson J. M., Pimsler M. L., Oyen K. J., Koch-Uhuad J. B., Herndon J. D., Strange J. P., et al. (2018). Distance, elevation, and environment as drivers of diversity and divergence in bumblebees across latitude and altitude. Mol. Ecol. 27, 2926–2942. 10.1111/mec.14735 PubMed DOI
Jackson J., Pimsler M., Oyen K., Strange J., Dillon M., Lozier J. (2020). Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Mol. Ecol. 29, 920–939. 10.1111/mec.15376 PubMed DOI
Jha S. (2015). Contemporary human-altered landscapes and oceanic barriers reduce bumblebee gene flow. Mol. Ecol. 24, 993–1006. 10.1111/mec.13090 PubMed DOI
Jha S., Kremen C. (2013). Urban land use limits regional bumble bee gene flow. Mol. Ecol. 22, 2483–2495. 10.1111/mec.12275 PubMed DOI
Kerr J. T., Pindar A., Galpern P., Packer L., Potts S. G., Roberts S. M., et al. (2015). CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents. Science 349, 177–180. 10.1126/science.aaa7031 PubMed DOI
Klein A. M., VaissièreCane B. E, J. H., Steffan-Dewenter I., Cunningham S. A., Kremen C., Tscharntke T., et al. (2007). Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. 10.1098/rspb.2006.3721 PubMed DOI PMC
Kosior A., Celary W., Olejniczak P., Fijał J., Król W., Solarz W., et al. (2007). The decline of the bumblebees and cuckoo bees (hymenoptera: Apidae: Bombini) of western and central Europe. Oryx 41, 79–88. 10.1017/S0030605307001597 DOI
Kraus F., Wolf S., Moritz R. (2008). Male flight distance and population substructure in the bumblebee Bombus terrestris . J. Anim. Ecol. 78 (1), 247–252. 10.1111/j.1365-2656.2008.01479.x PubMed DOI
Lai E. C. (2004). Notch signaling: Control of cell communication and cell fate. Development 131, 965–973. 10.1242/dev.01074 PubMed DOI
Langmead B., Salzberg S. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Lecocq T., Gérard M., Michez D., Dellicour S. (2017). Conservation genetics of European bees: New insights from the continental scale. Conserv. Genet. 18, 585–596. 10.1007/s10592-016-0917-3 DOI
Lecocq T., Biella P., Martinet B., Rasmont P. (2020). Too strict or too loose? Integrative taxonomic assessment of Bombus lapidaries complex (hymenoptera: Apidae). Zool. Scr. 9, 187–196. 10.1111/zsc.12402 DOI
Lecocq T., Brasero N., Martinet B., Valterová I., Rasmont P. (2015). Highly polytypic taxon complex: Interspecific and intraspecific integrative taxonomic assessment of the widespread pollinator Bombus pascuorum scopoli 1763 (hymenoptera: Apidae). Syst. Entomol. 40, 881–890. 10.1111/syen.12137 DOI
Lecocq T., Dellicour S., Michez D., Lhomme P., Vanderplanck M., Valterová I., et al. (2013). Scent of a break-up: Phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evol. Biol. 13, 263. 10.1186/1471-2148-13-263 PubMed DOI PMC
Lee J., Yoo E., Lee H., Park K., Hur J., Lim C. (2017). LSM12 and ME31B/DDX6 define distinct modes of posttranscriptional regulation by ATAXIN-2 protein complex in Drosophila circadian pacemaker neurons. Mol. Cell 66 (1), 129–140. 10.1016/j.molcel.2017.03.004 PubMed DOI
Lehmann R., Jiménez F., Dietrich U., Campos-Ortega J. A. (1983). On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster . Wilehm. Roux. Arch. Dev. Biol. 192, 62–74. 10.1007/BF00848482 PubMed DOI
Lepais O., Darvill B., O'Connor S., Osborne J., Sanderson R., Cussans J., et al. (2010). Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol. Ecol. 19, 819–831. 10.1111/j.1365-294X.2009.04500.x PubMed DOI
Levermore G., Parkinson J., Lee K., Laycock P., Lindley S. (2018). The increasing trend of the urban heat island intensity. Urban Clim. 24, 360–368. 10.1016/j.uclim.2017.02.004 DOI
Lewis S., Maslin M. (2015). Defining the Anthropocene. Nature 519, 171–180. 10.1038/nature14258 PubMed DOI
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25–20782079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Liczner A. R., Colla S. R. (2019). A systematic review of the nesting and overwintering habitat of bumble bees globally. J. Insect Conserv. 23, 787–801. 10.1007/s10841-019-00173-7 DOI
Lotterhos K. E., Whitlock M. C. (2014). Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192. 10.1111/mec.12725 PubMed DOI PMC
Lozier J. D., Jackson J., Dillon M., Strange J. (2016). Population genomics of divergence among extreme and intermediate color forms in a polymorphic insect. Ecol. Evol. 6, 1075–1091. 10.1002/ece3.1928 PubMed DOI PMC
Maebe K., Hart A. F., Marshall L., Vandamme P., Vereecken N. J., Michez D., et al. (2021). Bumblebee resilience to climate change, through plastic and adaptive responses. Glob. Chang. Biol. 27, 4223–4237. 10.1111/gcb.15751 PubMed DOI
Maebe K., Meeus I., Ganne M., De Meulemeester T., Biesmeijer K., Smagghe G. (2015). Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. PLoS ONE 10, e0127870. 10.1371/journal.pone.0127870 PubMed DOI PMC
Manichaikul A., Mychaleckyj J. C., Rich S. S., Daly K., Sale M., Chen W. M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics 26 (22), 2867–2873. 10.1093/bioinformatics/btq559 PubMed DOI PMC
Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27 (2), 209–220. PMID: 6018555. PubMed
Marshall L., Biesmeijer J. C., Rasmont P., Vereecken N. J., Dvorak L., Fitzpatrick U., et al. (2018). The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Chang. Biol. 24, 101–116. 10.1111/gcb.13867 PubMed DOI
Martinet B., Zambra E., Przybyla K., Lecocq T., Nonclercq D., Rasmont P., et al. (2021). Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Funct. Ecol. 35 (3), 739–752. 10.1111/1365-2435.13738 DOI
McLaughlin J. F., Winker K. (2020). An empirical examination of sample size effects on population demographic estimates in birds using single nucleotide polymorphism (SNP) data. PeerJ 8, e9939. 10.7717/peerj.9939 PubMed DOI PMC
McNeil D. J., McCormick E., Heimann A. C., Kammerer M., Douglas M. R., Goslee S. C., et al. (2020). Bumblebees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 22306. 10.1038/s41598-020-78119-2 PubMed DOI PMC
Meeus I., Brown M. J. F., De Graaf D. C., Smagghe G. (2011). Effects of invasive parasites on bumblebee declines. Conserv. Biol. 25, 662–671. 10.1111/j.1523-1739.2011.01707.x PubMed DOI
Mudunuri U., Che A., Yi M., Stephens R. M. (2009). bioDBnet: the biological database network. Bioinformatics 25, 555–556. 10.1093/bioinformatics/btn654 PubMed DOI PMC
Narum S. R., Buerkle C. A., Davey J. W., Miller M. R., Hohenlohe P. A. (2013). Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol. 22, 2841–2847. 10.1111/mec.12350 PubMed DOI PMC
Nazareno A. G., Bemmels J. B., Dick C. W., Lohmann L. G. (2017). Minimum sample sizes for population genomics: An empirical study from an amazonian plant species. Mol. Ecol. Resour. 17 (6), 1136–1147. 10.1111/1755-0998.12654 PubMed DOI
Nielsen R. (2001). Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647. 10.1046/j.1365-2540.2001.00895.x PubMed DOI
Nieto A., Roberts S. P., Kemp J., Rasmont P., Kuhlmann M., Criado M. G., et al. (2014). European red list of bees. Luxembourg: Publication Office of the European Union, 98.
Nooten S. S., Rehan S. M. (2019). Historical changes in bumble bee body size and range shift of declining species. Biodivers. Conserv. 29, 451–467. 10.1007/s10531-019-01893-7 DOI
O'Leary S. J., Puritz J. B., Willis S. C., Hollenbeck C. M., Portnoy D. S. (2018). These aren't the loci you'e looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27, 3193–3206. 10.1111/mec.14792 PubMed DOI
Oliver S. V., Brooke B. D. (2018). The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae).Anopheles arabiensis (Diptera: Culicidae). PLoS ONE 13 (2), e0192551. 10.1371/journal.pone.0192551 PubMed DOI PMC
Osborne J., Clark S., Morris R., Williams I., Riley J., Smith A., et al. (1999). A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533. 10.1046/j.1365-2664.1999.00428.x DOI
Owen R. E., Richards K. W., Wilkes A. (1995). Chromosome numbers and karyotypic variation in bumble bees (hymenoptera: Apidae; bombini). J. Kans. Entomol. Soc. 68 (3), 290–302. Available at: https://www.jstor.org/stable/25085597 .
Paris J. R., Stevens J. R., Catchen J. M. (2017). Lost in parameter space: A road map for stacks. Methods Ecol. Evol. 8, 1360–1373. 10.1111/2041-210X.12775 DOI
Pebesma E. (2018). Simple features for R: Standardized support for spatial vector data. R J. 10 (1), 439–446. 10.32614/RJ-2018-009 DOI
Peeters T. M. J., Nieuwenhuijsen H., Smit J., van der Meer F., Raemakers I. P., Heitmans W. R. B., et al. (2012). De nederlandse bijen (hymenoptera: Apidae s.l.). Leiden, Netherlands: - Natuur van Nederland.
Pirounakis K., Koulianos S., Schmid-Hempel P. (1998). Genetic variation across European populations of Bombus pascuorum (Hymenoptera: Apidae) from mitochondrial DNA sequence data. Eur. J. Entomol. 95, 27–33.
Radchenko V. G., Pesenko Y. A. (1994). Biology of bees (hymenoptera, apoidea). St. Petersburg: Zoological Institute of the Russian Academy of Sciences, 350. 10.13140/2.1.3938.6242 DOI
Rasmont P., Franzén M., Lecocq T., Harpke A., Roberts S., Biesmeijer J. C., et al. (2015). Climatic risk and distribution atlas of European bumblebees. BioRisk 10, 1–236. 10.3897/biorisk.10.4749 DOI
Rasmont P., Ghisbain G., Terzo M. (2021). Bumblebees of Europe and neighbouring regions. Verrières-le-Buisson, France: NAP Editions.
Raven P. H., Wagner D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U. S. A. 118 (2), e2002548117. 10.1073/pnas.2002548117 PubMed DOI PMC
Redhead J. W., Dreier S., Bourke A. F. G., Heard M. S., Jordan W. C., Sumner S., et al. (2016). Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species. Ecol. Appl. 26 (3), 726–739. 10.1890/15-0546 PubMed DOI
Rochette N., Catchen J. (2017). Deriving genotypes from RAD-seq short-read data using Stacks. Nat. Protoc. 12, 2640–2659. 10.1038/nprot.2017.123 PubMed DOI
Ross N. (2020). fasterize: Fast polygon to raster conversion. R package version 1.0.3. Available at: https://CRAN.R-project.org/package=fasterize .
Ruddiman W. F. (2013). The Anthropocene. Annu. Rev. Earth Planet. Sci. 41 (1), 45–68. 10.1146/annurev-earth-050212-123944 DOI
Sadd B. M., Barribeau S. M., Bloch G., de Graaf D. C., Dearden P., Elsik C. G., et al. (2015). The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol. 16, 76. 10.1186/s13059-015-0623-3 PubMed DOI PMC
Sage R. F. (2020). Global change biology: A primer. Glob. Chang. Biol. 26 (1), 3–30. 10.1111/gcb.14893 PubMed DOI
Sánchez-Bayo F. (2011). Impacts of agricultural pesticides on terrestrial ecosystems. Bussum, Netherlands: Bentham Science Publisher, 63–87. Chapter 4.
Sánchez-Bayo F., Wyckhuys K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. 10.1016/j.biocon.2019.01.020 DOI
Shafer A. B., Wolf J. B., Alves P. C., Bergström L., Bruford M. W., Brännström I., et al. (2015). Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30, 78–87. 10.1016/j.tree.2014.11.009 PubMed DOI
Silva S. E., Seabra S. G., Carvalheiro L. G., Nunes V. L., Marabuto E., Mendes R., et al. (2020). Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biol. J. Linn. Soc. Lond. 129, 259–272. 10.1093/biolinnean/blz182 DOI
Silver K. S., Du Y., Nomura Y., Oliveira E. E., Salgado V. L., Zhorov B. S., et al. (2014). Voltage-gated sodium channels as insecticide targets. Adv. Insect Phys. 46, 389–433. 10.1016/B978-0-12-417010-0.00005-7 PubMed DOI PMC
Sivakoff F. S., Gardiner M. M. (2017). Soil lead contamination decreases bee visit duration at sunflowers. Urban Ecosyst. 20, 1221–1228. 10.1007/s11252-017-0674-1 DOI
South A. (2011). rworldmap: a new R package for mapping global data. R. J. 31 (1), 35–43. 10.32614/RJ-2011-006 DOI
Sun C., Huang J., Wang Y., Zhao X., Su L., Thomas G. W. C., et al. (2021). Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol. Biol. Evol. 38, 486–501. 10.1093/molbev/msaa240 PubMed DOI PMC
Tarnawska M., Kafel A., Augustyniak M., Rost-Roszkowska M., Babczyńska A. (2019). Microevolution or wide tolerance? Level of stress proteins in the beet armyworm Spodoptera eqigua hübner (Lepidoptera: Noctuidae) exposed to cadmium for over 150 generations. Ecotoxicol. Environ. Saf. 30 (178), 1–8. 10.1016/j.ecoenv.2019.04.017 PubMed DOI
Theodorou P., Baltz L. M., Paxton R. J., Soro A. (2021). Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 14, 53–68. 10.1111/eva.13087 PubMed DOI PMC
Theodorou P., Radzevičiūte R., Kahnt B., Soro A., Grosse I., Paxton R. J. (2018). Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. Biol. Sci. 285, 20172806. 10.1098/rspb.2017.2806 PubMed DOI PMC
Thompson H. M. (2001). Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32, 305–321. 10.1051/apido:2001131 DOI
Tommasi N., Pioltelli E., Biella P., Labra M., Casiraghi M., Galimberti A. (2022). Effect of urbanization and its environmental stressors on the intraspecific variation of flight functional traits in two bumblebee species. Oecologia 199, 289–299. 10.1007/s00442-022-05184-x PubMed DOI PMC
Van Swaay C. A. M., Warren M. S. (2012). “Developing butterflies as indicators in Europe: Current situation and future options,” in De vlinderstichting/Dutch butterfly conservation (Butterfly Conservation UKWageningen: Butterfly Conservation Europe; ). reportnr. VS2012.012.
Vanderplanck M., Martinet B., Carvalheiro L., Rasmont P., Barraud A., Renaudeau C., et al. (2019a). Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Sci. Rep. 9, 12596. 10.1038/s41598-019-49025-z PubMed DOI PMC
Vanderplanck M., Roger N., Moerman R., Ghisbain G., Gérard M., Popowski D., et al. (2019b). Bumble bee parasite prevalence but not genetic diversity impacted by the invasive plant Impatiens glandulifera . Ecosphere 10 (7), e02804. 10.1002/ecs2.2804 DOI
Vaudo A., Tooker J., Patch H., Biddinger D., Coccia M., Crone M., et al. (2020). Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11 (2), 132. 10.3390/insects11020132 PubMed DOI PMC
Velthuis H. H. W., van Doorn A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451. 10.1051/apido:2006019 DOI
Vray S., Rollin O., Rasmont P., Dufrêne M., Michez D., Dendoncker N. (2019). A century of local changes in bumblebee communities and landscape composition in Belgium. J. Insect Conserv. 23, 489–501. 10.1007/s10841-019-00139-9 DOI
Wagner D. L., Grames E. M., Forister M. L., Berenbaum M. R., Stopak D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. U. S. A. 118, e2023989118. 10.1073/pnas.2023989118 PubMed DOI PMC
Warmke J. W., Reenan R. A. G., Wang P., Qian S., Arena J. P., Wang J., et al. (1997). Functional expression of Drosophila para sodium channels: Modulation by the membrane protein TipE and toxin pharmacology. J. Gen. Physiol. 110, 119–133. 10.1085/jgp.110.2.119 PubMed DOI PMC
Wickham H., François R., Henry L., Müller K. (2021). dplyr: A grammar of data manipulation. R package version 1.0.7. Available at: https://CRAN.R-project.org/package=dplyr .
Wickham H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.
Wickham H. (2011). The split-apply-combine strategy for data analysis. J. Stat. Softw. 40 (1), 1–29. 10.18637/jss.v040.i01 DOI
Widmer A., Schmid-Hempel P. (1999). The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol. Ecol. 8, 387–398. 10.1046/j.1365-294X.1999.00584.x PubMed DOI
Williams P. H., Altanchimeg D., Byvaltsev A., De Jonghe R., Jaffar S., Japoshvili G., et al. (2020). Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (hymenoptera, apidae, Bombus). Eur. J. Taxon. 719 (1), 1–120. 10.5852/ejt.2020.719.1107 DOI
Williams P. H., Osborne J. L. (2009). Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387. 10.1051/apido/2009025 DOI
Wolf S., Moritz R. F. A. (2008). Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39, 419–427. 10.1051/apido:2008020 DOI
Wood T., Ghisbain G., Rasmont P., Kleijn D., Raemakers I., Praz C., et al. (2021). Global patterns in bumble bee pollen collection show phylogenetic conservation of diet. J. Anim. Ecol. 90 (10), 2421–2430. 10.1111/1365-2656.13553 PubMed DOI
Xu T., Rebay I., Fleming R. J., Scottgale T. N., Artavanis-Tsakonsa S. (1990). The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev. 4, 464–475. 10.1101/gad.4.3.464 PubMed DOI
Yañez O., Piot N., Dalmon A., de Miranda J. R., Chantawannakul P., Panziera D., et al. (2020). Bee viruses: Routes of infection in hymenoptera. Front. Microbiol. 11, 943. 10.3389/fmicb.2020.00943 PubMed DOI PMC
You L. L., Wu Y., Xu B., Ding J., Ge L. Q., Yang G. Q., et al. (2016). Driving pest insect populations: Agricultural chemicals lead to an adaptive syndrome in Nilaparvata lugens stål (Hemiptera: Delphacidae). Sci. Rep. 23, 37430. 10.1038/srep37430 PubMed DOI PMC
Zhao S., Liu S., Zhou D. (2016). Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. U. S. A. 113 (22), 6313–6318. 10.1073/pnas.1602312113 PubMed DOI PMC
Zhu F., Moural T. W., Nelson D. R., Palli S. R. (2016). A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s. Sci. Rep. 6, 20421. 10.1038/srep20421 PubMed DOI PMC
Dryad
10.5061/dryad.00000005j