Intra-Arrest Therapeutic Hypothermia and Neurologic Outcome in Patients Admitted after Out-of-Hospital Cardiac Arrest: A Post Hoc Analysis of the Princess Trial
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36291308
PubMed Central
PMC9599313
DOI
10.3390/brainsci12101374
PII: brainsci12101374
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac arrest, intra-arrest hypothermia, outcome, trans-nasal evaporative cooling,
- Publikační typ
- časopisecké články MeSH
Background: Despite promising results, the role of intra-arrest hypothermia in out-of-hospital cardiac arrest (OHCA) remains controversial. The aim of this study was to assess the effects of trans-nasal evaporative cooling (TNEC) during resuscitation on neurological recovery in OHCA patients admitted alive to the hospital. Methods: A post hoc analysis of the PRINCESS trial, including only patients admitted alive to the hospital, either assigned to TNEC or standard of care during resuscitation. The primary endpoint was favorable neurological outcome (FO) defined as a Cerebral Performance Category (CPC) of 1-2 at 90 days. The secondary outcomes were overall survival at 90 days and CPC 1 at 90 days. Subgroup analyses were performed according to the initial cardiac rhythm. Results: A total of 149 patients in the TNEC and 142 in the control group were included. The number of patients with CPC 1-2 at 90 days was 56/149 (37.6%) in the intervention group and 45/142 (31.7%) in the control group (p = 0.29). Survival and CPC 1 at 90 days was observed in 60/149 patients (40.3%) vs. 52/142 (36.6%; p = 0.09) and 50/149 (33.6%) vs. 35/142 (24.6%; p = 0.11) in the two groups. In the subgroup of patients with an initial shockable rhythm, the number of patients with CPC 1 at 90 days was 45/83 (54.2%) in the intervention group and 27/78 (34.6%) in the control group (p = 0.01). Conclusions: In this post hoc analysis of admitted OHCA patients, no statistically significant benefits of TNEC on neurological outcome at 90 days was found. In patients with initial shockable rhythm, TNEC was associated with increased full neurological recovery.
Department of Intensive Care Hôpital Universitaire de Bruxelles 1070 Brussels Belgium
Department of Medicine Karolinska Institute 17177 Stockholm Sweden
Zobrazit více v PubMed
Nolan J.P., Sandroni C., Böttiger B.W., Cariou A., Cronberg T., Friberg H., Genbrugge C., Haywood K., Lilja G., Moulaert V.R.M., et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation. 2021;161:220–269. doi: 10.1016/j.resuscitation.2021.02.012. PubMed DOI
Panchal A.R., Bartos J.A., Cabañas J.G., Donnino M.W., Drennan I.R., Hirsch K.G., Kudenchuk P.J., Kurz M.C., Lavonas E.J., Morley P.T., et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142((Suppl 2)):S366–S468. doi: 10.1161/CIR.0000000000000916. PubMed DOI
Dankiewicz J., Cronberg T., Lilja G., Jakobsen J.C., Levin H., Ullén S., Rylander C., Wise M.P., Oddo M., Cariou A., et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2021;384:2283–2294. doi: 10.1056/NEJMoa2100591. PubMed DOI
Bernard S.A., Gray T.W., Buist M.D., Jones B.M., Silvester W., Gutteridge G., Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002;346:557–563. doi: 10.1056/NEJMoa003289. PubMed DOI
Hypothermia after Cardiac Arrest Study Group Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. The New England journal of medicine. N. Engl. J. Med. 2002;346:549–556. doi: 10.1056/NEJMoa012689. PubMed DOI
Nielsen N., Wetterslev J., Cronberg T., Erlinge D., Gasche Y., Hassager C., Horn J., Hovdenes J., Kjaergaard J., Kuiper M., et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N. Engl. J. Med. 2013;369:2197–2206. doi: 10.1056/NEJMoa1310519. PubMed DOI
Lascarrou J.-B., Merdji H., Le Gouge A., Colin G., Grillet G., Girardie P., Coupez E., Dequin P.-F., Cariou A., Boulain T., et al. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. N. Engl. J. Med. 2019;381:2327–2337. doi: 10.1056/NEJMoa1906661. PubMed DOI
Taccone F.S., Picetti E., Vincent J.-L. High Quality Targeted Temperature Management (TTM) After Cardiac Arrest. Crit. Care. 2020;24:6. doi: 10.1186/s13054-019-2721-1. PubMed DOI PMC
Abella B.S., Zhao D., Alvarado J., Hamann K., Hoek T.L.V., Becker L.B. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109:2786–2791. doi: 10.1161/01.CIR.0000131940.19833.85. PubMed DOI
Nozari A., Safar P., Stezoski S.W., Wu X., Kostelnik S., Radovsky A., Tisherman S., Kochanek P. Critical time window for intra-arrest cooling with cold saline flush in a dog model of cardiopulmonary resuscitation. Circulation. 2006;113:2690–2696. doi: 10.1161/CIRCULATIONAHA.106.613349. PubMed DOI
Riter H.G., Brooks L.A., Pretorius A.M., Ackermann L.W., Kerber R.E. Intra-arrest hypothermia: Both cold liquid ventilation with perfluorocarbons and cold intravenous saline rapidly achieve hypothermia, but only cold liquid ventilation improves resumption of spontaneous circulation. Resuscitation. 2009;80:561–566. doi: 10.1016/j.resuscitation.2009.01.016. PubMed DOI PMC
Staffey K.S., Dendi R., Brooks L.A., Pretorius A.M., Ackermann L.W., Zamba K., Dickson E., Kerber R.E. Liquid ventilation with perfluorocarbons facilitates resumption of spontaneous circulation in a swine cardiac arrest model. Resuscitation. 2008;78:77–84. doi: 10.1016/j.resuscitation.2008.02.008. PubMed DOI PMC
Castrén M., Nordberg P., Svensson L., Taccone F., Vincent J., Desruelles D., Eichwede F., Mols P., Schwab T., Vergnion M., et al. Intra-arrest transnasal evaporative cooling: A randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness) Circulation. 2010;122:729–736. doi: 10.1161/CIRCULATIONAHA.109.931691. PubMed DOI
Nordberg P., Taccone F.S., Truhlar A., Forsberg S., Hollenberg J., Jonsson M., Cuny J., Goldstein P., Vermeersch N., Higuet A., et al. Effect of Trans-Nasal Evaporative Intra-arrest Cooling on Functional Neurologic Outcome in Out-of-Hospital Cardiac Arrest: The PRINCESS Randomized Clinical Trial. JAMA. 2019;321:1677–1685. doi: 10.1001/jama.2019.4149. PubMed DOI PMC
Taccone F.S., Hollenberg J., Forsberg S., Truhlar A., Jonsson M., Annoni F., Gryth D., Ringh M., Cuny J., Busch H.J., et al. Effect of intra-arrest trans-nasal evaporative cooling in out-of-hospital cardiac arrest: A pooled individual participant data analysis. Crit. Care. 2021;25:198. doi: 10.1186/s13054-021-03583-9. PubMed DOI PMC
Nordberg P., Taccone F.S., Castren M., Truhlář A., Desruelles D., Forsberg S., Hollenberg J., Vincent J.-L., Svensoon L. Design of the PRINCESS trial: Pre-hospital resuscitation intra-nasal cooling effectiveness survival study (PRINCESS) BMC Emerg. Med. 2013;13:21. doi: 10.1186/1471-227X-13-21. PubMed DOI PMC
Gough C.J.R., Nolan J.P. The role of adrenaline in cardiopulmonary resuscitation. Crit. Care. 2018;22:139. doi: 10.1186/s13054-018-2058-1. PubMed DOI PMC
Perkins G.D., Ji C., Deakin C.D., Quinn T., Nolan J.P., Scomparin C., Regan S., Long J., Slowther A., Pocock H., et al. A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2018;379:711–721. doi: 10.1056/NEJMoa1806842. PubMed DOI
Haywood K., Whitehead L., Nadkarni V.M., Achana F., Beesems S., Böttiger B.W., Brooks A., Castrén M., Ong M.E., Hazinski M.F., et al. COSCA (Core Outcome Set for Cardiac Arrest) in Adults: An Advisory Statement From the International Liaison Committee on Resuscitation. Circulation. 2018;137:e783–e801. doi: 10.1161/CIR.0000000000000562. PubMed DOI
Hsu C., Li J., Cinousis M.J., Sheak K.R., Gaieski D.F., Abella B., Leary M. Cerebral performance category at hospital discharge predicts long-term survival of cardiac arrest survivors receiving targeted temperature management. Crit. Care Med. 2014;42:2575–2581. doi: 10.1097/CCM.0000000000000547. PubMed DOI PMC
Cariou A., Claessens Y.E., Pène F., Marx J.S., Spaulding C., Hababou C., Casadevall N., Mira J.-P., Carli P., Hermine O. Early high-dose erythropoietin therapy and hypothermia after out-of-hospital cardiac arrest: A matched control study. Resuscitation. 2008;76:397–404. doi: 10.1016/j.resuscitation.2007.10.003. PubMed DOI
Cariou A., Deye N., Vivien B., Richard O., Pichon N., Bourg A., Huet L., Buleon C., Frey J., Asfar P., et al. Early High-Dose Erythropoietin Therapy After Out-of-Hospital Cardiac Arrest: A Multicenter, Randomized Controlled Trial. J. Am. Coll. Cardiol. 2016;68:40–49. doi: 10.1016/j.jacc.2016.04.040. PubMed DOI