H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36293256
PubMed Central
PMC9604518
DOI
10.3390/ijms232012398
PII: ijms232012398
Knihovny.cz E-resources
- Keywords
- H4K5, acetylation, butyrylation, epigenetic regulation, sperm, sperm chromatin, spermatogenesis,
- MeSH
- Acetylation MeSH
- Chromatin * metabolism MeSH
- Histones metabolism MeSH
- Humans MeSH
- Mice MeSH
- Nucleosomes * metabolism MeSH
- Protein Processing, Post-Translational MeSH
- Protamines metabolism MeSH
- Chromatin Assembly and Disassembly MeSH
- Semen metabolism MeSH
- Spermatids metabolism MeSH
- Spermatogenesis physiology MeSH
- Spermatozoa metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chromatin * MeSH
- Histones MeSH
- Nucleosomes * MeSH
- Protamines MeSH
Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Biochemistry and Molecular Genetics Service Clínic Barcelona 08036 Barcelona Spain
Clinic Institute of Gynaecology Obstetrics and Neonatology Clínic Barcelona 08036 Barcelona Spain
Clinic Institute of Urology and Nephrology IDIBAPS Clínic Barcelona 08036 Barcelona Spain
Department of Pathology Clínic Barcelona 08036 Barcelona Spain
Department of Zoology Faculty of Science Charles University 128 44 Prague Czech Republic
Faculty of Medicine University of Vic Central University of Catalonia 08500 Barcelona Spain
See more in PubMed
De Mateo S., Castillo J., Estanyol J.M., Ballescà J.L., Oliva R. Proteomic Characterization of the Human Sperm Nucleus. Proteomics. 2011;11:2714–2726. doi: 10.1002/pmic.201000799. PubMed DOI
Hammoud S., Nix D.A., Hammoud A.O., Gibson M., Cairns B.R., Carrell D. Genome-Wide Analysis Identifies Changes in Histone Retention and Epigenetic Modifications at Developmental and Imprinted Gene Loci in the Sperm of Infertile Men. Hum. Reprod. 2011;26:2558–2569. doi: 10.1093/humrep/der192. PubMed DOI PMC
Oliva R., Luís Ballescà J. Altered Histone Retention and Epigenetic Modifications in the Sperm of Infertile Men. Asian J. Androl. 2012;14:239–240. doi: 10.1038/aja.2011.159. PubMed DOI PMC
Azpiazu R., Amaral A., Castillo J., Estanyol J.M., Guimerà M., Ballescà J.L., Balasch J., Oliva R. High-Throughput Sperm Differential Proteomics Suggests That Epigenetic Alterations Contribute to Failed Assisted Reproduction. Hum. Reprod. 2014;29:1225–1237. doi: 10.1093/humrep/deu073. PubMed DOI
Castillo J., Amaral A., Azpiazu R., Vavouri T., Estanyol J.M., Ballesca J.L., Oliva R. Genomic and Proteomic Dissection and Characterization of the Human Sperm Chromatin. Mol. Hum. Reprod. 2014;20:1041–1053. doi: 10.1093/molehr/gau079. PubMed DOI
Castillo J., Estanyol J., Ballescà J., Oliva R. Human Sperm Chromatin Epigenetic Potential: Genomics, Proteomics, and Male Infertility. Asian J. Androl. 2015;17:601. doi: 10.4103/1008-682X.153302. PubMed DOI PMC
Barrachina F., Soler-Ventura A., Oliva R., Jodar M. Sperm Nucleoproteins (Histones and Protamines) In: Zini A., Agarwal A., editors. A Clinician’s Guide to Sperm DNA and Chromatin Damage. Springer International Publishing; Cham, Switzerland: 2018. pp. 31–51.
Oliva R., Dixon G.H. Vertebrate Protamine Genes and the Histone-to-Protamine Replacement Reaction. Prog. Nucleic Acid Res. Mol. Biol. 1991;40:25–94. doi: 10.1016/S0079-6603(08)60839-9. PubMed DOI
Christensen M.E., Dixon G.H. Hyperacetylation of Histone H4 Correlates with the Terminal, Transcriptionally Inactive Stages of Spermatogenesis in Rainbow Trout. Dev. Biol. 1982;93:404–415. doi: 10.1016/0012-1606(82)90127-0. PubMed DOI
Oliva R., Mezquita C. Histone H4 Hyperacetylation and Rapid Turnover of Its Acetyl Groups in Transcriptionally Inactive Rooster Testis Spermatids. Nucleic Acids Res. 1982;10:8049–8059. doi: 10.1093/nar/10.24.8049. PubMed DOI PMC
Grimes S.R., Henderson N. Hyperacetylation of Histone H4 in Rat Testis Spermatids. Exp. Cell Res. 1984;152:91–97. doi: 10.1016/0014-4827(84)90232-5. PubMed DOI
Oliva R., Bazett-Jones D., Mezquita C., Dixon G.H. Factors Affecting Nucleosome Disassembly by Protamines in Vitro. Histone Hyperacetylation and Chromatin Structure, Time Dependence, and the Size of the Sperm Nuclear Proteins. J. Biol. Chem. 1987;262:17016–17025. doi: 10.1016/S0021-9258(18)45485-3. PubMed DOI
Hazzouri M., Pivot-Pajot C., Faure A.-K., Usson Y., Pelletier R., Sèle B., Khochbin S., Rousseaux S. Regulated Hyperacetylation of Core Histones during Mouse Spermatogenesis: Involvement of Histone-Deacetylases. Eur. J. Cell Biol. 2000;79:950–960. doi: 10.1078/0171-9335-00123. PubMed DOI
Oliva R., Castillo J. Proteomics and the Genetics of Sperm Chromatin Condensation. Asian J. Androl. 2011;13:24–30. doi: 10.1038/aja.2010.65. PubMed DOI PMC
Oliva R., Bazett-Jones D.P., Locklear L., Dixon G.H. Histone Hyperacetylation Can Induce Unfolding of the Nucleosome Core Particle. Nucleic Acids Res. 1990;18:2739–2747. doi: 10.1093/nar/18.9.2739. PubMed DOI PMC
Singh I., Parte P. Heterogeneity in the Epigenetic Landscape of Murine Testis-Specific Histone Variants TH2A and TH2B Sharing the Same Bi-Directional Promoter. Front. Cell. Dev. Biol. 2021;9:755751. doi: 10.3389/fcell.2021.755751. PubMed DOI PMC
Pentakota S.K., Sandhya S., Sikarwar A.P., Chandra N., Satyanarayana Rao M.R. Mapping Post-Translational Modifications of Mammalian Testicular Specific Histone Variant TH2B in Tetraploid and Haploid Germ Cells and Their Implications on the Dynamics of Nucleosome Structure. J. Proteome Res. 2014;13:5603–5617. doi: 10.1021/pr500597a. PubMed DOI
Ding D., Nguyen T.T., Pang M.Y.H., Ishibashi T. Primate-Specific Histone Variants. Genome. 2021;64:337–346. doi: 10.1139/gen-2020-0094. PubMed DOI
Hoghoughi N., Barral S., Vargas A., Rousseaux S., Khochbin S. Histone Variants: Essential Actors in Male Genome Programming. J. Biochem. 2018;163:97–103. doi: 10.1093/jb/mvx079. PubMed DOI
Barral S., Morozumi Y., Tanaka H., Montellier E., Govin J., de Dieuleveult M., Charbonnier G., Couté Y., Puthier D., Buchou T., et al. Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Mol Cell. 2017;66:89–101.e8. doi: 10.1016/j.molcel.2017.02.025. PubMed DOI
Rezaei-Gazik M., Vargas A., Amiri-Yekta A., Vitte A.-L., Akbari A., Barral S., Esmaeili V., Chuffart F., Sadighi-Gilani M.A., Couté Y., et al. Direct Visualization of Pre-Protamine 2 Detects Protamine Assembly Failures and Predicts ICSI Success. Mol. Hum. Reprod. 2022;28:gaac004. doi: 10.1093/molehr/gaac004. PubMed DOI
Dhar S., Thota A., Rao M.R.S. Insights into Role of Bromodomain, Testis-Specific (Brdt) in Acetylated Histone H4-Dependent Chromatin Remodeling in Mammalian Spermiogenesis. J. Biol. Chem. 2012;287:6387–6405. doi: 10.1074/jbc.M111.288167. PubMed DOI PMC
Goudarzi A., Shiota H., Rousseaux S., Khochbin S. Genome-Scale Acetylation-Dependent Histone Eviction during Spermatogenesis. J. Mol. Biol. 2014;426:3342–3349. doi: 10.1016/j.jmb.2014.02.023. PubMed DOI
Her Y.R., Wang L., Chepelev I., Manterola M., Berkovits B., Cui K., Zhao K., Wolgemuth D.J. Genome-Wide Chromatin Occupancy of BRDT and Gene Expression Analysis Suggest Transcriptional Partners and Specific Epigenetic Landscapes That Regulate Gene Expression during Spermatogenesis. Mol. Reprod. Dev. 2021;88:141–157. doi: 10.1002/mrd.23449. PubMed DOI PMC
Manterola M., Brown T.M., Oh M.Y., Garyn C., Gonzalez B.J., Wolgemuth D.J. BRDT Is an Essential Epigenetic Regulator for Proper Chromatin Organization, Silencing of Sex Chromosomes and Crossover Formation in Male Meiosis. PLoS Genet. 2018;14:e1007209. doi: 10.1371/journal.pgen.1007209. PubMed DOI PMC
Morinière J., Rousseaux S., Steuerwald U., Soler-López M., Curtet S., Vitte A.-L., Govin J., Gaucher J., Sadoul K., Hart D.J., et al. Cooperative Binding of Two Acetylation Marks on a Histone Tail by a Single Bromodomain. Nature. 2009;461:664–668. doi: 10.1038/nature08397. PubMed DOI
Pivot-Pajot C., Caron C., Govin J., Vion A., Rousseaux S., Khochbin S. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein. Mol. Cell. Biol. 2003;23:5354–5365. doi: 10.1128/MCB.23.15.5354-5365.2003. PubMed DOI PMC
Shang E., Nickerson H.D., Wen D., Wang X., Wolgemuth D.J. The First Bromodomain of Brdt, a Testis-Specific Member of the BET Sub-Family of Double-Bromodomain-Containing Proteins, Is Essential for Male Germ Cell Differentiation. Development. 2007;134:3507–3515. doi: 10.1242/dev.004481. PubMed DOI
Sonnack V., Failing K., Bergmann M., Steger K. Expression of Hyperacetylated Histone H4 during Normal and Impaired Human Spermatogenesis. Andrologia. 2002;34:384–390. doi: 10.1046/j.1439-0272.2002.00524.x. PubMed DOI
Faure A.K., Pivot-Pajot C., Kerjean A., Hazzouri M., Pelletier R., Péoc’h M., Sèle B., Khochbin S., Rousseaux S. Misregulation of Histone Acetylation in Sertoli Cell-only Syndrome and Testicular Cancer. Mol. Hum. Reprod. 2003;9:757–763. doi: 10.1093/molehr/gag101. PubMed DOI
Kleiman S.E., Bar-Shira Maymon B., Hauser R., Botchan A., Paz G., Yavetz H., Yogev L. Histone H4 Acetylation and AZFc Involvement in Germ Cells of Specimens of Impaired Spermatogenesis. Fertil. Steril. 2008;89:1728–1736. doi: 10.1016/j.fertnstert.2007.05.068. PubMed DOI
Barrachina F., de la Iglesia A., Jodar M., Soler-Ventura A., Mallofré C., Rodriguez-Carunchio L., Goudarzi A., Corral J.M., Ballescà J.L., Castillo J., et al. Histone H4 Acetylation Is Dysregulated in Active Seminiferous Tubules Adjacent to Testicular Tumours. Hum. Reprod. 2022;30:1712–1726. doi: 10.1093/humrep/deac130. PubMed DOI
Crespo M., Damont A., Blanco M., Lastrucci E., Kennani S.E., Ialy-Radio C., El Khattabi L., Terrier S., Louwagie M., Kieffer-Jaquinod S., et al. Multi-Omic Analysis of Gametogenesis Reveals a Novel Signature at the Promoters and Distal Enhancers of Active Genes. Nucleic Acids Res. 2020;48:4115–4138. doi: 10.1093/nar/gkaa163. PubMed DOI PMC
Sabari B.R., Zhang D., Allis C.D., Zhao Y. Metabolic Regulation of Gene Expression through Histone Acylations. Nat. Rev. Mol. Cell. Biol. 2017;18:90–101. doi: 10.1038/nrm.2016.140. PubMed DOI PMC
Tan M., Luo H., Lee S., Jin F., Yang J.S., Montellier E., Buchou T., Cheng Z., Rousseaux S., Rajagopal N., et al. Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification. Cell. 2011;146:1016–1028. doi: 10.1016/j.cell.2011.08.008. PubMed DOI PMC
Goudarzi A., Zhang D., Huang H., Barral S., Kwon O.K., Qi S., Tang Z., Buchou T., Vitte A.-L., He T., et al. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters. Mol. Cell. 2016;62:169–180. doi: 10.1016/j.molcel.2016.03.014. PubMed DOI PMC
Brykczynska U., Hisano M., Erkek S., Ramos L., Oakeley E.J., Roloff T.C., Beisel C., Schübeler D., Stadler M.B., Peters A.H.F.M. Repressive and Active Histone Methylation Mark Distinct Promoters in Human and Mouse Spermatozoa. Nat. Struct. Mol. Biol. 2010;17:679–687. doi: 10.1038/nsmb.1821. PubMed DOI
Erkek S., Hisano M., Liang C.-Y., Gill M., Murr R., Dieker J., Schübeler D., van der Vlag J., Stadler M.B., Peters A.H.F.M. Molecular Determinants of Nucleosome Retention at CpG-Rich Sequences in Mouse Spermatozoa. Nat. Struct. Mol. Biol. 2013;20:868–875. doi: 10.1038/nsmb.2599. PubMed DOI
Saida M., Iles D., Elnefati A., Brinkworth M., Miller D. Key Gene Regulatory Sequences with Distinctive Ontological Signatures Associate with Differentially Endonuclease-Accessible Mouse Sperm Chromatin. Reproduction. 2011;142:73–86. doi: 10.1530/REP-10-0536. PubMed DOI
Vavouri T., Lehner B. Chromatin Organization in Sperm May Be the Major Functional Consequence of Base Composition Variation in the Human Genome. PLoS Genet. 2011;7:e1002036. doi: 10.1371/journal.pgen.1002036. PubMed DOI PMC
Ihara M., Meyer-Ficca M.L., Leu N.A., Rao S., Li F., Gregory B.D., Zalenskaya I.A., Schultz R.M., Meyer R.G. Paternal Poly (ADP-Ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression. PLoS Genet. 2014;10:e1004317. doi: 10.1371/journal.pgen.1004317. PubMed DOI PMC
Castillo J., Jodar M., Oliva R. The Contribution of Human Sperm Proteins to the Development and Epigenome of the Preimplantation Embryo. Hum. Reprod. Update. 2018;24:535–555. doi: 10.1093/humupd/dmy017. PubMed DOI
Teperek M., Simeone A., Gaggioli V., Miyamoto K., Allen G.E., Erkek S., Kwon T., Marcotte E.M., Zegerman P., Bradshaw C.R., et al. Sperm Is Epigenetically Programmed to Regulate Gene Transcription in Embryos. Genome Res. 2016;26:1034–1046. doi: 10.1101/gr.201541.115. PubMed DOI PMC
Kaneshiro K.R., Rechtsteiner A., Strome S. Sperm-Inherited H3K27me3 Impacts Offspring Transcription and Development in C. Elegans. Nat. Commun. 2019;10:1271. doi: 10.1038/s41467-019-09141-w. PubMed DOI PMC
Kaufman P.D., Rando O.J. Chromatin as a Potential Carrier of Heritable Information. Curr. Opin. Cell Biol. 2010;22:284–290. doi: 10.1016/j.ceb.2010.02.002. PubMed DOI PMC
De Geyter C., Calhaz-Jorge C., Kupka M.S., Wyns C., Mocanu E., Motrenko T., Scaravelli G., Smeenk J., Vidakovic S., Goossens V., et al. ART in Europe, 2014: Results Generated from European Registries by ESHRE: The European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE) Hum. Reprod. 2018;33:1586–1601. doi: 10.1093/humrep/dey242. PubMed DOI
de Mateo S., Ramos L., van der Vlag J., de Boer P., Oliva R. Improvement in Chromatin Maturity of Human Spermatozoa Selected through Density Gradient Centrifugation. Int. J. 2011;34:256–267. doi: 10.1111/j.1365-2605.2010.01080.x. PubMed DOI
Castillo J., Simon L., de Mateo S., Lewis S., Oliva R. Protamine/DNA Ratios and DNA Damage in Native and Density Gradient Centrifuged Sperm From Infertile Patients. J. Androl. 2011;32:324–332. doi: 10.2164/jandrol.110.011015. PubMed DOI
Chiamchanya C., Kaewnoonual N., Visutakul P., Manochantr S., Chaiya J. Comparative Study of the Effects of Three Semen Preparation Media on Semen Analysis, DNA Damage and Protamine Deficiency, and the Correlation between DNA Integrity and Sperm Parameters. Asian J. Androl. 2010;12:271–277. doi: 10.1038/aja.2009.60. PubMed DOI PMC
Muratori M., Tarozzi N., Carpentiero F., Danti S., Perrone F.M., Cambi M., Casini A., Azzari C., Boni L., Maggi M., et al. Sperm Selection with Density Gradient Centrifugation and Swim up: Effect on DNA Fragmentation in Viable Spermatozoa. Sci. Rep. 2019;9:7492. doi: 10.1038/s41598-019-43981-2. PubMed DOI PMC
World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. World Health Organization; Geneva, Switzerland: 2021. License: CC BY-NC-SA 3.0 IGO.
Jodar M., Kalko S., Castillo J., Ballescà J.L., Oliva R. Differential RNAs in the Sperm Cells of Asthenozoospermic Patients. Hum. Reprod. 2012;27:1431–1438. doi: 10.1093/humrep/des021. PubMed DOI
Cerilli L.A., Kuang W., Roger D. A Practical Approach to Testicular Biopsy Interpretation for Male Infertility. Arch. Pathol. Lab. Med. 2010;134:1197–1204. doi: 10.5858/2009-0379-RA.1. PubMed DOI
Moch H., Cubilla A.L., Humphrey P.A., Reuter V.E., Ulbright T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016;70:93–105. doi: 10.1016/j.eururo.2016.02.029. PubMed DOI
Salonia A., Bettocchi C., Boeri L., Capogrosso P., Carvalho J., Cilesiz N.C., Cocci A., Corona G., Dimitropoulos K., Gül M., et al. European Association of Urology Guidelines on Sexual and Reproductive Health—2021 Update: Male Sexual Dysfunction. Eur. Urol. 2021;80:333–357. doi: 10.1016/j.eururo.2021.06.007. PubMed DOI
Leblanc L., Lagrange F., Lecoanet P., Marçon B., Eschwege P., Hubert J. Testicular Microlithiasis and Testicular Tumor: A Review of the Literature. Basic Clin. Androl. 2018;28:8. doi: 10.1186/s12610-018-0073-3. PubMed DOI PMC
Muciaccia B., Boitani C., Berloco B.P., Nudo F., Spadetta G., Stefanini M., de Rooij D.G., Vicini E. Novel Stage Classification of Human Spermatogenesis Based on Acrosome Development1. Biol. Reprod. 2013;89:60. doi: 10.1095/biolreprod.113.111682. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Bolte S., Cordelières F.P. A Guided Tour into Subcellular Colocalization Analysis in Light Microscopy. J. Microsc. 2006;224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
RStudio Team . RStudio: Integrated Development Environment for R. RStudio, Inc.; Boston, MA, USA: 2020.
Fox J., Weisberg S. An R Companion to Applied Regression. 3rd ed. Sage; Thousand Oaks, CA, USA: 2019.