Analysis of Output Signal Distortion of Galvanic Isolation Circuits for Monitoring the Mains Voltage Waveform
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 2022:31120/1312/3110
Czech University of Life Sciences Prague
PubMed
36298118
PubMed Central
PMC9611784
DOI
10.3390/s22207769
PII: s22207769
Knihovny.cz E-zdroje
- Klíčová slova
- THD, galvanic separation, line voltage, total harmonic distortion,
- MeSH
- elektronika * MeSH
- zdroje elektrické energie * MeSH
- Publikační typ
- časopisecké články MeSH
Different methods for galvanically isolated monitoring of the mains voltage waveform were evaluated. The aim was to determine the level of distortion of the output signal relative to the input signal and the suitability of each method for calculating active power values. Six fixtures were tested: two voltage transformers, an electronic circuit with a current transformer, a standalone current transformer, a simple circuit with optocouplers, and a circuit with an A/D-D/A converter with capacitive coupling. The input and output waveforms were mathematically analyzed by three methods: (1) calculating the spectral components of waveforms and the relative changes in their THD (total harmonic distortion) values, (2) determining the similarity of waveforms according to the size of the area bounded by the input and output waveform curves, and (3) determining the accuracy of the active power calculation based on the output waveform. The time difference in the zero crossing of the input and output signals was measured, and further calculations for the second and third method were performed on the zero-crossing time shift-corrected waveforms. Other aspects of selecting the appropriate type of monitoring element, such as power consumption or overall circuit complexity, were also evaluated.
Zobrazit více v PubMed
Božiková M., Bilčík M., Madola V., Szabóová T., Kubík L., Lendelová J., Cviklovič V. The Effect of Azimuth and Tilt Angle Changes on the Energy Balance of Photovoltaic System Installed in the Southern Slovakia Region. Appl. Sci. 2021;11:8998. doi: 10.3390/app11198998. DOI
Kupin A., Kuznetsov D., Muzyka I., Kumchenko Y. Structure of Intellectual System for Optimize Self-Consumption of Energy Produced by Solar Panels in MicroGrid; Proceedings of the 9th International Youth Science Forum “Litteris et Artibus” & 14th International Conference “Young Scientists Towards The Challenges Of Modern Technology”; Lviv, Ukraine. 21–23 November 2019.
Schubert E. Light-Emitting Diodes. 2nd ed. Cambridge University Press; Cambridge, UK: 2006. DOI
Kaczmarek M. Two Channels Opto-Isolation Circuit for Measurements of the Differential Voltage of Voltage Transformers and Dividers. Energies. 2022;15:2694. doi: 10.3390/en15072694. DOI
De Maria L., Bartalesi D., Pistoni N.C. Combined Optical Sensor and Capacitor Voltage Divider Arrangement for Voltage Control in Medium Voltage Switchboard Fiber. Procedia Eng. 2016;168:1597–1600. doi: 10.1016/j.proeng.2016.11.469. DOI
Pereira F.D., Galeti J.H., Higuti R.T., Connelly M.J., Kitano C. Real-Time Polarimetric Optical High-Voltage Sensor Using Phase-Controlled Demodulation. J. Lightw. Technol. 2018;36:3275–3283. doi: 10.1109/JLT.2018.2840706. DOI
Delle Femine A., Gallo D., Landi C., Lo Schiavo A., Luiso M. Low Power Contactless Voltage Sensor for Low Voltage Power Systems. Sensors. 2019;19:3513. doi: 10.3390/s19163513. PubMed DOI PMC
European Committee for Electrotechnical Standardization (CENELEC) BS EN 50160:2010+A3:2019—Voltage Characteristics of Electricity Supplied by Public Distribution Networks. European Committee for Electrotechnical Standardization (CENELEC); Brussels, Belgium: 2019.
Lamedica R., Ruvio A., Ribeiro P.F., Regoli M. A Simulink model to assess harmonic distortion in MV/LV distribution networks with time-varying non linear loads. Simul. Model. Pract. Theory. 2019;90:64–80. doi: 10.1016/j.simpat.2018.10.012. DOI
IEEE Std 519-1992. Institute of Electrical and Electronics Engineers, Inc.; New York, NY, USA: 1993. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems; pp. 1–112. DOI
Arrillaga J., Smith B.C., Watson N.R., Wood A.R. Power System Harmonic Analysis. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 1997. DOI
Harris F.J. Proceedings of the IEEE. Volume 66. IEEE; New York, NY, USA: 1978. On the use of windows for harmonic analysis with the discrete Fourier transform; pp. 51–83. DOI
Shmilovitz D. On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Trans. Power Deliv. 2005;20:526–528. doi: 10.1109/TPWRD.2004.839744. DOI
Ramljak I., Tokic A. Harmonic emission of LED lighting. AIMS Energy. 2019;8:1–26. doi: 10.3934/energy.2020.1.1. DOI
Stošović M.A., Dimitrijević M., Bojanić S., Nieto-Taladriz O., Litovski V. Characterization of nonlinear loads in power distribution grid. Facta universitatis. Electron. Energy. 2016;29:159–175. doi: 10.2298/FUEE1602159A. DOI
Dugan R.C., Santoso S., McGranaghan M.F., Beaty H.W. Electrical Power Systems Quality. 3rd ed. McGraw Hill Professional; New York, NY, USA: 2012.
Kaczmarek M. Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers. Energies. 2021;14:4432. doi: 10.3390/en14154432. DOI
Filipović-Grčić D., Filipović-Grčić B., Krajtner D. Frequency response and harmonic distortion testing of inductive voltage transformer used for power quality measurements. Procedia Eng. 2017;202:159–167. doi: 10.1016/j.proeng.2017.09.703. DOI
Kruck A. Designing Linear Amplifiers Using the IL 300 Optocoupler Application Note. 2008. [(accessed on 25 March 2022)]. Vishay, Document Number: 83708, Rev. 1.4. Available online: https://www.semanticscholar.org/paper/Designing-Linear-Amplifiers-Using-the-IL-300-Note-Kruck/3bd1c11dab8c10860f7a2ae92ae5049871bfef07.
Simoes J.B., Silva R.M.C., Morgado A.M.L.S., Correia C.M. The optical coupling of analog signals. IEEE Trans. Nucl. Sci. 1996;43:1672–1674. doi: 10.1109/23.507168. DOI