Heterogeneity in the use of biologics for severe asthma in Europe: a SHARP ERS study
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36299366
PubMed Central
PMC9589318
DOI
10.1183/23120541.00273-2022
PII: 00273-2022
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Treatment with biologics for severe asthma is informed by international and national guidelines and defined by national regulating bodies, but how these drugs are used in real-life is unknown. MATERIALS AND METHODS: The European Respiratory Society (ERS) SHARP Clinical Research Collaboration conducted a three-step survey collecting information on asthma biologics use in Europe. Five geographically distant countries defined the survey questions, focusing on seven end-points: biologics availability and financial issues, prescription and administration modalities, inclusion criteria, continuation criteria, switching biologics, combining biologics and evaluation of corticosteroid toxicity. The survey was then sent to SHARP National Leads of 28 European countries. Finally, selected questions were submitted to a broad group of 263 asthma experts identified by national societies. RESULTS: Availability of biologics varied between countries, with 17 out of 28 countries having all five existing biologics. Authorised prescribers (pulmonologists and other specialists) also differed. In-hospital administration was the preferred deliverance modality. While exacerbation rate was used as an inclusion criterion in all countries, forced expiratory volume in 1 s was used in 46%. Blood eosinophils were an inclusion criterion in all countries for interleukin-5 (IL-5)-targeted and IL-4/IL-13-targeted biologics, with varying thresholds. There were no formally established criteria for continuing biologics. Reduction in exacerbations represented the most important benchmark, followed by improvement in asthma control and quality of life. Only 73% (191 out of 263) of surveyed clinicians assessed their patients for corticosteroid-induced toxicity. CONCLUSION: Our study reveals important heterogeneity in the use of asthma biologics across Europe. To what extent this impacts on clinical outcomes relevant to patients and healthcare services needs further investigation.
Department of Pulmonology Lithuanian University of Health Sciences Kaunas Lithuania
Department of Respiratory Medicine and Allergy Karolinska University Hospital Stockholm Sweden
Department of Respiratory Medicine Liège University Hospital Liège Belgium
Department of Respiratory Medicine Medical Center Leeuwarden Leeuwarden the Netherlands
Department of Respiratory Medicine University Hospital of Liège Liège Belgium
Faculty of Medicine University of Southampton Southampton UK
Institute of Technology University of Tartu Tartu Estonia
Latvian Association of Allergists Center of Tuberculosis and Lung Diseases Riga Latvia
National Institute of Pneumology M Nasta Bucharest Romania
National Korányi Institute of Pulmonology Budapest Hungary
NIHR Southampton Biomedical Research Centre Southampton UK
Personalized Medicine Asthma and Allergy Humanitas Clinical and Research Center IRCCS Milan Italy
PhyMedExp Univ Montpellier CNRS INSERM CHU Montpellier Montpellier France
Respiratory Medicine Department and Asthma Center Athens Chest Hospital Sotiria Athens Greece
Respiratory Research Unit Bispebjerg University Hospital Copenhagen Denmark
School of Medicine University College Dublin Dublin Ireland
St Vincent's University Hospital University College Dublin Dublin Ireland
The Clinic for Lung Diseases Jordanovac University Hospital Centre Zagreb Zagreb Croatia
Universitätsmedizin Mainz Mainz Germany
University Clinic of Medicine Cantonal Hospital Basel Liestal Switzerland
University Clinic of Respiratory and Allergic Diseases Golnik Slovenia
Zobrazit více v PubMed
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2021. Available from: http://ginasthma.org/
Hekking PPW, Wener RR, Amelink M, et al. . The prevalence of severe refractory asthma. J Allergy Clin Immunol 2015; 135: 896–902. doi:10.1016/j.jaci.2014.08.042 PubMed DOI
Chung KF, Wenzel SE, Brozek JL, et al. . International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J 2014; 43: 343–373. doi:10.1183/09031936.00202013 PubMed DOI
Israel E, Reddel HK. Severe and difficult-to-treat asthma in adults. N Engl J Med 2017; 377: 965–976. doi:10.1056/NEJMra1608969 PubMed DOI
Pavord ID, Beasley R, Agusti A, et al. . After asthma: redefining airways diseases. Lancet 2018; 391: 350–400. doi:10.1016/S0140-6736(17)30879-6 PubMed DOI
Brusselle GG, Koppelman GH. Biologic therapies for severe asthma. N Engl J Med 2022; 386: 157–171. doi:10.1056/NEJMra2032506 PubMed DOI
Djukanovic R, Adcock IM, Anderson G, et al. . The severe heterogeneous asthma research collaboration, patient-centred (SHARP) ERS clinical research collaboration: a new dawn in asthma research. Eur Respir J 2018; 52: 1801671. doi:10.1183/13993003.01671-2018 PubMed DOI
van Bragt JJMH, Adcock IM, Bel EHD, et al. . Characteristics and treatment regimens across ERS SHARP severe asthma registries. Eur Respir J 2020; 55: 1901163. doi:10.1183/13993003.01163-2019 PubMed DOI
Porsbjerg CM, Menzies-Gow AN, Tran TN, et al. . Global variability in administrative approval prescription criteria for biologic therapy in severe asthma. J Allergy Clin Immunol Pract 2022; 10: 1202–1216.e23. doi:10.1016/j.jaip.2021.12.027 PubMed DOI
Calzetta L, Matera MG, Rogliani P. Monoclonal antibodies in severe asthma: is it worth it? Expert Opin Drug Metab Toxicol 2019; 15: 517–520. doi:10.1080/17425255.2019.1621837 PubMed DOI
Canonica GW, Harrison TW, Chanez P, et al. . Benralizumab improves symptoms of patients with severe, eosinophilic asthma with a diagnosis of nasal polyposis. Allergy 2022; 77: 150–161. doi:10.1111/all.14902 PubMed DOI
Menzella F, Fontana M, Contoli M, et al. . Efficacy and safety of omalizumab treatment over a 16-year follow-up: when a clinical trial meets real-life. J Asthma Allergy 2022; 15: 505–515. doi:10.2147/JAA.S363398 PubMed DOI PMC
Graff S, Brusselle G, Hanon S, et al. . Anti-interleukin-5 therapy is associated with attenuated lung function decline in severe eosinophilic asthma patients from the Belgian severe asthma registry. J Allergy Clin Immunol Pract 2022; 10: 467–477. doi:10.1016/j.jaip.2021.09.023 PubMed DOI
Wechsler ME, Ford LB, Maspero JF, et al. . Long-term safety and efficacy of dupilumab in patients with moderate-to-severe asthma (TRAVERSE): an open-label extension study. Lancet Respir Med 2022; 10: 11–25. doi:10.1016/S2213-2600(21)00322-2 PubMed DOI
Hansen S, Ulrik C, Hilberg O, et al. . The effectiveness of anti-IL5 biologics is comparable in previous-smokers and never-smokers with severe asthma. Eur Respir J 2021; 58: Suppl. 65, PA3742.
Buhl R, Humbert M, Bjermer L, et al. . Severe eosinophilic asthma: a roadmap to consensus. Eur Respir J 2017; 49: 1700634. doi:10.1183/13993003.00634-2017 PubMed DOI
Frix AN, Schleich F, Paulus V, et al. . Effectiveness of omalizumab on patient reported outcomes, lung function, and inflammatory markers in severe allergic asthma. Biochem Pharmacol 2020; 179: 113944. doi:10.1016/j.bcp.2020.113944 PubMed DOI
Schleich F, Graff S, Nekoee H, et al. . Real-world experience with mepolizumab: does it deliver what it has promised? Clin Exp Allergy 2020; 50: 687–695. doi:10.1111/cea.13601 PubMed DOI
Upham JW, Le Lievre C, Jackson DJ, et al. . Defining a severe asthma super-responder: findings from a Delphi process. J Allergy Clin Immunol Pract 2021; 9: 3997–4004. doi:10.1016/j.jaip.2021.06.041 PubMed DOI
Pelaia C, Crimi C, Nolasco S, et al. . Switch from omalizumab to benralizumab in allergic patients with severe eosinophilic asthma: a real-life experience from southern Italy. Biomedicines 2021; 9: 1822. doi:10.3390/biomedicines9121822 PubMed DOI PMC
Carpagnano GE, Pelaia C, D'Amato M, et al. . Switching from omalizumab to mepolizumab: real-life experience from Southern Italy. Ther Adv Respir Dis 2020; 14: 175346662092923. doi:10.1177/1753466620929231 PubMed DOI PMC
Numata T, Araya J, Miyagawa H, et al. . Effectiveness of switching biologics for severe asthma patients in Japan: a single-center retrospective study. J Asthma Allergy 2021; 14: 609–618. doi:10.2147/JAA.S311975 PubMed DOI PMC
Ortega G, Tongchinsub P, Carr T. Combination biologic therapy for severe persistent asthma. Ann Allergy Asthma Immunol 2019; 123: 309–311. doi:10.1016/j.anai.2019.06.013 PubMed DOI
Dedaj R, Unsel L. Case study: a combination of Mepolizumab and Omaluzimab injections for severe asthma. J Asthma 2019; 56: 473–474. doi:10.1080/02770903.2018.1471706 PubMed DOI
Wechsler ME, Ruddy MK, Pavord ID, et al. . Efficacy and safety of Itepekimab in patients with moderate-to-severe asthma. N Engl J Med 2021; 385: 1656–1668. doi:10.1056/NEJMoa2024257 PubMed DOI
Menzies-Gow AN, McBrien C, Unni B, et al. . Real world biologic use and switch patterns in severe asthma: data from the international severe asthma registry and the US CHRONICLE study. J Asthma Allergy 2022; 15: 63–78. doi:10.2147/JAA.S328653 PubMed DOI PMC
Bel EH, Wenzel SE, Thompson PJ, et al. . Oral glucocorticoid-sparing effect of Mepolizumab in eosinophilic asthma. N Engl J Med 2014; 371: 1189–1197. doi:10.1056/NEJMoa1403291 PubMed DOI
Nair P, Wenzel S, Rabe KF, et al. . Oral glucocorticoid–sparing effect of benralizumab in severe asthma. N Engl J Med 2017; 376: 2448–2458. doi:10.1056/NEJMoa1703501 PubMed DOI
Rabe KF, Nair P, Brusselle G, et al. . Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med 2018; 378: 2475–2485. doi:10.1056/NEJMoa1804093 PubMed DOI
McDowell PJ, Stone JH, Zhang Y, et al. . Quantification of glucocorticoid-associated morbidity in severe asthma using the glucocorticoid toxicity index. J Allergy Clin Immunol Pract 2021; 9: 365–372. doi:10.1016/j.jaip.2020.08.032 PubMed DOI
E uropean Medicines Agency. XOLAIR (omalizumab). www.ema.europa.eu/en/medicines/human/EPAR/xolair
Food and Drug Administration. www.accessdata.fda.gov/drugsatfda_docs/label/2016/103976s5225lbl.pdf XOLAIR (omalizumab) for injection, for subcutaneous use.
European Medicines Agency. NUCALA (mepolizumab). www.ema.europa.eu/en/medicines/human/EPAR/nucala
Food and Drug Administration. NUCALA (mepolizumab) for injection, for subcutaneous use. www.accessdata.fda.gov/drugsatfda_docs/label/2015/125526Orig1s000Lbl.pdf
European Medicines Agency. CINQAERO (reslizumab). www.ema.europa.eu/en/documents/overview/cinqaero-epar-summary-public_en.pdf
Food and Drug Administration. CINQAIR (reslizumab) injection, for intravenous use. www.accessdata.fda.gov/drugsatfda_docs/label/2016/761033lbl.pdf
European Medicines Agency. www.ema.europa.eu/en/documents/overview/fasenra-epar-medicine-overview_en.pdf FASENRA (benralizumab). An overview of Fasenra and why it is authorized in the EU.
Food and Drug Administration. www.accessdata.fda.gov/drugsatfda_docs/label/2017/761070s000lbl.pdf FASENRA (benralizumab) injection, for subcutaneous use.
Food and Drug Administration. www.accessdata.fda.gov/drugsatfda_docs/label/2018/761055s007lbl.pdf DUPIXENT (dupilumab) injection, for subcutaneous use.
European Medicines Agency. www.ema.europa.eu/en/documents/product-information/dupixent-epar-product-information_en.pdf DUPIXENT (dupilumab).