Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes

. 2022 Oct 28 ; 50 (19) : 11285-11300.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36300626

HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes.

Zobrazit více v PubMed

Wilson D.N. Ribosome-targeting antibiotics and bacterial resistance mechanisms. Nat. Rev. Microbiol. 2014; 12:35–48. PubMed

Munita J.M., Arias C.A.. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016; 4:10.1128/microbiolspec.VMBF-0016-2015. PubMed DOI PMC

Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399:629–655. PubMed PMC

Wilson D.N., Hauryliuk V., Atkinson G.C., O’Neill A.J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 2020; 18:637–648. PubMed

Dönhöfer A., Franckenberg S., Wickles S., Berninghausen O., Beckmann R., Wilson D.N.. Structural basis for tetm-mediated tetracycline resistance. Proc. Natl. Acad. Sci. U.S.A. 2012; 109:16900–16905. PubMed PMC

Li W., Atkinson G.C., Thakor N.S., Allas U., Lu C.C., Chan K.Y., Tenson T., Schulten K., Wilson K.S., Hauryliuk V.et al. .. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 2013; 4:1477. PubMed PMC

Arenz S., Nguyen F., Beckmann R., Wilson D.N.. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:5401–5406. PubMed PMC

Sharkey L.K.R., O’Neill A.J.. Antibiotic resistance ABC-F proteins: bringing target protection into the limelight. ACS Infectious Diseases. 2018; 4:239–246. PubMed

Murina V., Kasari M., Hauryliuk V., Atkinson G.C.. Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest. Nucleic Acids Res. 2018; 46:3753–3763. PubMed PMC

Ero R., Kumar V., Su W., Gao Y.G.. Ribosome protection by ABC-F proteins-Molecular mechanism and potential drug design. Protein Sci. 2019; 28:684–693. PubMed PMC

Crowe-McAuliffe C., Murina V., Turnbull K.J., Kasari M., Mohamad M., Polte C., Takada H., Vaitkevicius K., Johansson J., Ignatova Z.et al. .. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin a antibiotics in Gram-positive pathogens. Nat. Commun. 2021; 12:3577. PubMed PMC

Crowe-McAuliffe C., Murina V., Turnbull K.J., Huch S., Kasari M., Takada H., Nersisyan L., Sundsfjord A., Hegstad K., Atkinson G.C.et al. .. Structural basis for poxta-mediated resistance to phenicol and oxazolidinone antibiotics. Nat. Commun. 2022; 13:1860. PubMed PMC

Mohamad M., Nicholson D., Saha C.K., Hauryliuk V., Edwards T.A., Atkinson G.C., Ranson N.A., O’Neill A.J.. Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic. Acids. Res. 2022; 50:2128–2142. PubMed PMC

Cox G., Thompson G.S., Jenkins H.T., Peske F., Savelsbergh A., Rodnina M.V., Wintermeyer W., Homans S.W., Edwards T.A., O’Neill A.J.. Ribosome clearance by fusb-type proteins mediates resistance to the antibiotic fusidic acid. Proc. Natl. Acad. Sci. U.S.A. 2012; 109:2102–2107. PubMed PMC

Tomlinson J.H., Thompson G.S., Kalverda A.P., Zhuravleva A., O’Neill A.J.. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into fusb-type fusidic acid resistance. Sci. Rep. 2016; 6:19524. PubMed PMC

Duval M., Dar D., Carvalho F., Rocha E.P.C., Sorek R., Cossart P.. HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proc. Natl. Acad. Sci. U.S.A. 2018; 115:13359–13364. PubMed PMC

Zhang Y., Mandava C.S., Cao W., Li X., Zhang D., Li N., Zhang Y., Zhang X., Qin Y., Mi K.et al. .. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat. Struct. Mol. Biol. 2015; 22:906–913. PubMed

Coatham M.L., Brandon H.E., Fischer J.J., Schummer T., Wieden H.-J.. The conserved GTPase HflX is a ribosome splitting factor that binds to the E-site of the bacterial ribosome. Nucleic Acids Res. 2016; 44:1952–1961. PubMed PMC

Dey S., Biswas C., Sengupta J.. The universally conserved GTPase HflX is an RNA helicase that restores heat-damaged Escherichia coli ribosomes. J. Cell Biol. 2018; 217:2519–2529. PubMed PMC

Srinivasan K., Dey S., Sengupta J.. Structural modules of the stress-induced protein hflx: an outlook on its evolution and biological role. Curr. Genet. 2019; 65:363–370. PubMed

Basu A., Yap M.N.. Disassembly of the staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E8165–E8173. PubMed PMC

Hillen H.S., Lavdovskaia E., Nadler F., Hanitsch E., Linden A., Bohnsack K.E., Urlaub H., Richter-Dennerlein R.. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat. Commun. 2021; 12:3672. PubMed PMC

Arnaud M., Chastanet A., Debarbouille M.. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 2004; 70:6887–6891. PubMed PMC

Takada H., Roghanian M., Murina V., Dzhygyr I., Murayama R., Akanuma G., Atkinson G.C., Garcia-Pino A., Hauryliuk V.. The C-Terminal RRM/ACT domain is crucial for fine-tuning the activation of ‘Long’ RelA-SpoT homolog enzymes by ribosomal complexes. Front. Microbiol. 2020; 11:277. PubMed PMC

Jurenas D., Payelleville A., Roghanian M., Turnbull K.J., Givaudan A., Brillard J., Hauryliuk V., Cascales E.. Photorhabdus antibacterial rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA. Nucleic Acids Res. 2021; 49:8384–8395. PubMed PMC

Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H.. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018; 7:e42166. PubMed PMC

Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A.. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC

Rohou A., Grigorieff N.. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015; 192:216–221. PubMed PMC

Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., Hagel P., Sitsel O., Raisch T., Prumbaum D.et al. .. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019; 2:218. PubMed PMC

Scheres S.H. RELION: implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012; 180:519–530. PubMed PMC

Zivanov J., Nakane T., Scheres S.H.W.. A bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ. 2019; 6:5–17. PubMed PMC

Heymann J.B. Guidelines for using bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci. 2018; 27:159–171. PubMed PMC

Kimanius D., Dong L., Sharov G., Nakane T., Scheres S.H.W.. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 2021; 478:4169–4185. PubMed PMC

Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A.et al. .. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022; 50:D439–D444. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A.et al. .. Highly accurate protein structure prediction with alphafold. Nature. 2021; 596:583–589. PubMed PMC

Long F., Nicholls R.A., Emsley P., Graaeulis S., Merkys A., Vaitkus A., Murshudov G.N.. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D Struct. Biol. 2017; 73:112–122. PubMed PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of coot. Acta. Crystallogr. D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A.et al. .. Overview of the CCP4 suite and current developments. Acta. Crystallogr. D Biol. Crystallogr. 2011; 67:235–242. PubMed PMC

Moriarty N.W., Grosse-Kunstleve R.W., Adams P.D.. electronic Ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta. Crystallogr. D Biol. Crystallogr. 2009; 65:1074–1080. PubMed PMC

Yamashita K., Palmer C.M., Burnley T., Murshudov G.N.. Cryo-EM single-particle structure refinement and map calculation using servalcat. Acta Crystallogr. D Struct. Biol. 2021; 77:1282–1291. PubMed PMC

Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D Biol. Crystallogr. 2010; 66:12–21. PubMed PMC

Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J.et al. .. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. D Struct. Biol. 2019; 75:861–877. PubMed PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L.. BLAST+: architecture and applications. BMC Bioinf. 2009; 10:421. PubMed PMC

Steinegger M., Soding J.. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 2017; 35:1026–1028. PubMed

Murina V., Kasari M., Takada H., Hinnu M., Saha C.K., Grimshaw J.W., Seki T., Reith M., Putrins M., Tenson T.et al. .. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J. Mol. Biol. 2019; 431:3568–3590. PubMed PMC

Katoh K., Standley D.M.. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013; 30:772–780. PubMed PMC

Capella-Gutierrez S., Silla-Martinez J.M., Gabaldon T.. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25:1972–1973. PubMed PMC

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q.. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015; 32:268–274. PubMed PMC

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S.. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018; 35:518–522. PubMed PMC

Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J.. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25:1189–1191. PubMed PMC

Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., Ferrin T.E.. UCSF chimerax: meeting modern challenges in visualization and analysis. Protein Sci. 2018; 27:14–25. PubMed PMC

Karray F., Darbon E., Oestreicher N., Dominguez H., Tuphile K., Gagnat J., Blondelet-Rouault M.H., Gerbaud C., Pernodet J.L.. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in streptomyces ambofaciens. Microbiology (Reading). 2007; 153:4111–4122. PubMed

Rudra P., Hurst-Hess K.R., Cotten K.L., Partida-Miranda A., Ghosh P.. Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:629–634. PubMed PMC

Chesneau O., Ligeret H., Hosan-Aghaie N., Morvan A., Dassa E.. Molecular analysis of resistance to streptogramin a compounds conferred by the vga proteins of staphylococci. Antimicrob. Agents Chemother. 2005; 49:973–980. PubMed PMC

Dar D., Shamir M., Mellin J.R., Koutero M., Stern-Ginossar N., Cossart P., Sorek R.. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science. 2016; 352:aad9822. PubMed PMC

Brodiazhenko T., Turnbull K.J., Wu K.J.Y., Takada H., Tresco B.I.C., Tenson T., Myers A.G., Hauryliuk V.. Synthetic oxepanoprolinamide iboxamycin is highly active against human pathogen Listeria monocytogenes. JAC Antimicrob. Resist. 2022; 4:dlac061. PubMed PMC

Matzov D., Eyal Z., Benhamou R.I., Shalev-Benami M., Halfon Y., Krupkin M., Zimmerman E., Rozenberg H., Bashan A., Fridman M.et al. .. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic. Acids. Res. 2017; 45:10284–10292. PubMed PMC

Su W., Kumar V., Ding Y., Ero R., Serra A., Lee B.S.T., Wong A.S.W., Shi J., Sze S.K., Yang L.et al. .. Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc. Natl. Acad. Sci. U.S.A. 2018; 115:5157–5162. PubMed PMC

Dunkle J.A., Xiong L., Mankin A.S., Cate J.H.. Structures of the escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:17152–17157. PubMed PMC

Tu D., Blaha G., Moore P., Steitz T.. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell. 2005; 121:257–270. PubMed

Schlünzen F., Zarivach R., Harms J., Bashan A., Tocilj A., Albrecht R., Yonath A., Franceschi F.. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature. 2001; 413:814–821. PubMed

Svetlov M.S., Syroegin E.A., Aleksandrova E.V., Atkinson G.C., Gregory S.T., Mankin A.S., Polikanov Y.S.. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 2021; 17:412–420. PubMed PMC

Syroegin E.A., Flemmich L., Klepacki D., Vazquez-Laslop N., Micura R., Polikanov Y.S.. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat. Struct. Mol. Biol. 2022; 29:152–161. PubMed PMC

Li Q., Pellegrino J., Lee D.J., Tran A.A., Chaires H.A., Wang R., Park J.E., Ji K., Chow D., Zhang N.et al. .. Synthetic group a streptogramin antibiotics that overcome vat resistance. Nature. 2020; 586:145–150. PubMed PMC

Tenson T., Lovmar M., Ehrenberg M.. The mechanism of action of macrolides, lincosamides and streptogramin b reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 2003; 330:1005–1014. PubMed

Menninger J.R., Coleman R.A.. Lincosamide antibiotics stimulate dissociation of peptidyl-transfer RNA from ribosomes. Antimicrob. Agents Chemother. 1993; 37:2027–2029. PubMed PMC

Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 1996; 178:3246–3251. PubMed PMC

Trieber C.A., Burkhardt N., Nierhaus K.H., Taylor D.E.. Ribosomal Protection from Tetracycline Mediated by Tet(O): Tet(O) Interaction with Ribosomes Is GTP-Dependent. Biol. Chem. 1998; 379:847–855. PubMed

Connell S.R., Trieber C.A., Stelzl U., Einfeldt E., Taylor D.E., Nierhaus K.H.. The tetracycline resistance protein Tet(O) perturbs the conformation of the ribosomal decoding centre. Mol. Microbiol. 2002; 45:1463–1472. PubMed

Sharkey L.K., Edwards T.A., O’Neill A.J.. ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio. 2016; 7:e01975. PubMed PMC

Connell S.R., Trieber C.A., Dinos G.P., Einfeldt E., Taylor D.E., Nierhaus K.H.. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J. 2003; 22:945–953. PubMed PMC

Connell S.R., Tracz D.M., Nierhaus K.H., Taylor D.E.. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 2003; 47:3675–3681. PubMed PMC

Polikanov Y.S., Steitz T.A., Innis C.A.. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 2014; 21:787–793. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural conservation of antibiotic interaction with ribosomes

. 2023 Sep ; 30 (9) : 1380-1392. [epub] 20230807

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...