Real-Time Study of Surface-Guided Nanowire Growth by In Situ Scanning Electron Microscopy
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
36305551
PubMed Central
PMC9706663
DOI
10.1021/acsnano.2c07480
Knihovny.cz E-resources
- Keywords
- ZnSe, guided growth, in situ growth, planar nanowires, real-time monitoring,
- Publication type
- Journal Article MeSH
Surface-guided growth has proven to be an efficient approach for the production of nanowire arrays with controlled orientations and their large-scale integration into electronic and optoelectronic devices. Much has been learned about the different mechanisms of guided nanowire growth by epitaxy, graphoepitaxy, and artificial epitaxy. A model describing the kinetics of surface-guided nanowire growth has been recently reported. Yet, many aspects of the surface-guided growth process remain unclear due to a lack of its observation in real time. Here we observe how surface-guided nanowires grow in real time by in situ scanning electron microscopy (SEM). Movies of ZnSe surface-guided nanowires growing on periodically faceted substrates of annealed M-plane sapphire clearly show how the nanowires elongate along the substrate nanogrooves while pushing the catalytic Au nanodroplet forward at the tip of the nanowire. The movies reveal the timing between competing processes, such as planar vs nonplanar growth, catalyst-selective vapor-liquid-solid elongation vs nonselective vapor-solid thickening, and the effect of topographic discontinuities of the substrate on the growth direction, leading to the formation of kinks and loops. Contrary to some observations for nonplanar nanowire growth, planar nanowires are shown to elongate at a constant rate and not by jumps. A decrease in precursor concentration as it is consumed after long reaction time causes the nanowires to shrink back instead of growing, thus indicating that the process is reversible and takes place near equilibrium. This real-time study of surface-guided growth, enabled by in situ SEM, enables a better understanding of the formation of nanostructures on surfaces.
CEITEC BUT Brno University of Technology Purkyňova 123 612 00Brno Czech Republic
Department of Chemical Research Support Weizmann Institute of Science Rehovot76100 Israel
Thermo Fisher Scientific Vlastimila Pecha 12 627 00Brno Czech Republic
See more in PubMed
Duan X.; Huang Y.; Cui Y.; Wang J.; Lieber C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409 (6816), 66–69. 10.1038/35051047. PubMed DOI
Huang M. H.; Mao S.; Feick H.; Yan H.; Wu Y.; Kind H.; Weber E.; Russo R.; Yang P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292 (5523), 1897–1899. 10.1126/science.1060367. PubMed DOI
Schvartzman M.; Tsivion D.; Mahalu D.; Raslin O.; Joselevich E. Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15195–15200. 10.1073/pnas.1306426110. PubMed DOI PMC
Kim D. R.; Lee C. H.; Zheng X. Direct Growth of Nanowire Logic Gates and Photovoltaic Devices. Nano Lett. 2010, 10 (3), 1050–1054. 10.1021/nl100011z. PubMed DOI
Gazibegovic S.; Car D.; Zhang H.; Balk S. C.; Logan J. A.; de Moor M. W. A.; Cassidy M. C.; Schmits R.; Xu D.; Wang G.; et al. Epitaxy of advanced nanowire quantum devices. Nature 2017, 548, 434.10.1038/nature23468. PubMed DOI
Gül Ö.; Zhang H.; Bommer J. D. S.; de Moor M. W. A.; Car D.; Plissard S. R.; Bakkers E. P. A. M.; Geresdi A.; Watanabe K.; Taniguchi T.; et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 2018, 13 (3), 192–197. 10.1038/s41565-017-0032-8. PubMed DOI
Wagner R. S.; Ellis W. C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4 (5), 89–90. 10.1063/1.1753975. DOI
Ben-Zvi R.; Burrows H.; Schvartzman M.; Bitton O.; Pinkas I.; Kaplan-Ashiri I.; Brontvein O.; Joselevich E. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy. ACS Nano 2019, 13 (5), 5572–5582. 10.1021/acsnano.9b00538. PubMed DOI PMC
Tsivion D.; Schvartzman M.; Popovitz-Biro R.; von Huth P.; Joselevich E. Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations. Science 2011, 333 (6045), 1003–1007. 10.1126/science.1208455. PubMed DOI
Alus L.; Brontvein O.; Kossoy A.; Feldman Y.; Joselevich E.. Aligned Growth of Semiconductor Nanowires on Scratched Amorphous Substrates. Adv. Funct. Mater. 2021, 31 ( (47), ), 2103950.10.1002/adfm.202103950. DOI
Nikoobakht B.; Michaels C. A.; Stranick S. J.; Vaudin M. D. Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 2004, 85 (15), 3244–3246. 10.1063/1.1803951. DOI
Fortuna S. A.; Wen J.; Chun I. S.; Li X. Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable. Nano Lett. 2008, 8 (12), 4421–4427. 10.1021/nl802331m. PubMed DOI
Tsivion D.; Joselevich E. Guided Growth of Epitaxially Coherent GaN Nanowires on SiC. Nano Lett. 2013, 13 (11), 5491–5496. 10.1021/nl4030769. PubMed DOI
Tsivion D.; Joselevich E. Guided Growth of Horizontal GaN Nanowires on Spinel with Orientation-Controlled Morphologies. J. Phys. Chem. C 2014, 118 (33), 19158–19164. 10.1021/jp504785v. DOI
Neeman L.; Ben-Zvi R.; Rechav K.; Popovitz-Biro R.; Oron D.; Joselevich E. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry. Nano Lett. 2017, 17 (2), 842–850. 10.1021/acs.nanolett.6b04087. PubMed DOI PMC
Tsivion D.; Schvartzman M.; Popovitz-Biro R.; Joselevich E. Guided Growth of Horizontal ZnO Nanowires with Controlled Orientations on Flat and Faceted Sapphire Surfaces. ACS Nano 2012, 6 (7), 6433–6445. 10.1021/nn3020695. PubMed DOI
Oksenberg E.; Popovitz-Biro R.; Rechav K.; Joselevich E. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue-UV Photodetectors. Adv. Mater. 2015, 27 (27), 3999–4005. 10.1002/adma.201500736. PubMed DOI
Reut G.; Oksenberg E.; Popovitz-Biro R.; Rechav K.; Joselevich E. Guided Growth of Horizontal p-Type ZnTe Nanowires. J. Phys. Chem. C 2016, 120 (30), 17087–17100. 10.1021/acs.jpcc.6b05191. PubMed DOI PMC
Shalev E.; Oksenberg E.; Rechav K.; Popovitz-Biro R.; Joselevich E. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors. ACS Nano 2017, 11 (1), 213–220. 10.1021/acsnano.6b04469. PubMed DOI PMC
Xu J.; Oksenberg E.; Popovitz-Biro R.; Rechav K.; Joselevich E. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls. J. Am. Chem. Soc. 2017, 139 (44), 15958–15967. 10.1021/jacs.7b09423. PubMed DOI
Rothman A.; Forsht T.; Danieli Y.; Popovitz-Biro R.; Rechav K.; Houben L.; Joselevich E. Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfaces. J. Phys. Chem. C 2018, 122 (23), 12413–12420. 10.1021/acs.jpcc.8b04063. DOI
Goren-Ruck L.; Tsivion D.; Schvartzman M.; Popovitz-Biro R.; Joselevich E. Guided Growth of Horizontal GaN Nanowires on Quartz and Their Transfer to Other Substrates. ACS Nano 2014, 8 (3), 2838–2847. 10.1021/nn4066523. PubMed DOI
Oksenberg E.; Martí-Sánchez S.; Popovitz-Biro R.; Arbiol J.; Joselevich E. Surface-Guided Core-Shell ZnSe@ZnTe Nanowires as Radial p-n Heterojunctions with Photovoltaic Behavior. ACS Nano 2017, 11 (6), 6155–6166. 10.1021/acsnano.7b02199. PubMed DOI
Xu J.; Rechav K.; Popovitz-Biro R.; Nevo I.; Feldman Y.; Joselevich E. High-Gain 200 ns Photodetectors from Self-Aligned CdS-CdSe Core-Shell Nanowalls. Adv. Mater. 2018, 30 (20), 1800413.10.1002/adma.201800413. PubMed DOI
Zhou H.; Yuan S.; Wang X.; Xu T.; Wang X.; Li H.; Zheng W.; Fan P.; Li Y.; Sun L.; et al. Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano 2017, 11 (2), 1189–1195. 10.1021/acsnano.6b07374. PubMed DOI
Wang Y.; Sun X.; Shivanna R.; Yang Y.; Chen Z.; Guo Y.; Wang G.-C.; Wertz E.; Deschler F.; Cai Z.; et al. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. Nano Lett. 2016, 16 (12), 7974–7981. 10.1021/acs.nanolett.6b04297. PubMed DOI
Oksenberg E.; Sanders E.; Popovitz-Biro R.; Houben L.; Joselevich E. Surface-Guided CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Lett. 2018, 18 (1), 424–433. 10.1021/acs.nanolett.7b04310. PubMed DOI
Chen J.; Fu Y.; Samad L.; Dang L.; Zhao Y.; Shen S.; Guo L.; Jin S. Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2017, 17 (1), 460–466. 10.1021/acs.nanolett.6b04450. PubMed DOI
Aseev P.; Fursina A.; Boekhout F.; Krizek F.; Sestoft J. E.; Borsoi F.; Heedt S.; Wang G.; Binci L.; Martí-Sánchez S.; et al. Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks. Nano Lett. 2019, 19 (1), 218–227. 10.1021/acs.nanolett.8b03733. PubMed DOI PMC
Friedl M.; Cerveny K.; Weigele P.; Tütüncüoglu G.; Martí-Sánchez S.; Huang C.; Patlatiuk T.; Potts H.; Sun Z.; Hill M. O.; et al. Template-Assisted Scalable Nanowire Networks. Nano Lett. 2018, 18 (4), 2666–2671. 10.1021/acs.nanolett.8b00554. PubMed DOI
Yu L.; Xu M.; Xu J.; Xue Z.; Fan Z.; Picardi G.; Fortuna F.; Wang J.; Xu J.; Shi Y.; et al. In-Plane Epitaxial Growth of Silicon Nanowires and Junction Formation on Si(100) Substrates. Nano Lett. 2014, 14 (11), 6469–6474. 10.1021/nl503001g. PubMed DOI
Xu M.; Xue Z.; Wang J.; Zhao Y.; Duan Y.; Zhu G.; Yu L.; Xu J.; Wang J.; Shi Y.; et al. Heteroepitaxial Writing of Silicon-on-Sapphire Nanowires. Nano Lett. 2016, 16 (12), 7317–7324. 10.1021/acs.nanolett.6b02004. PubMed DOI
Rothman A.; Manis J.; Dubrovskii V. G.; Sikola T.; Mach J.; Joslevich E.. Kinetics of Guided Growth of Horizontal GaN Nanowires on Flat and Faceted Sapphire Surfaces. Nanomaterials-Basel 2021, 11 ( (3), ), 624.10.3390/nano11030624. PubMed DOI PMC
Rothman A.; Dubrovskii V. G.; Joselevich E. Kinetics and mechanism of planar nanowire growth. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (1), 152.10.1073/pnas.1911505116. PubMed DOI PMC
Wen C.-Y.; Reuter M. C.; Bruley J.; Tersoff J.; Kodambaka S.; Stach E. A.; Ross F. M. Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires. Science 2009, 326 (5957), 1247–1250. 10.1126/science.1178606. PubMed DOI
Kim B. J.; Tersoff J.; Kodambaka S.; Reuter M. C.; Stach E. A.; Ross F. M. Kinetics of Individual Nucleation Events Observed in Nanoscale Vapor-Liquid-Solid Growth. Science 2008, 322 (5904), 1070–1073. 10.1126/science.1163494. PubMed DOI
Hannon J. B.; Kodambaka S.; Ross F. M.; Tromp R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440 (7080), 69–71. 10.1038/nature04574. PubMed DOI
Harmand J. C.; Patriarche G.; Glas F.; Panciera F.; Florea I.; Maurice J. L.; Travers L.; Ollivier Y.. Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 2018, 121 ( (16), ),10.1103/PhysRevLett.121.166101. PubMed DOI
Fan Z.; Maurice J. L.; Florea I.; Chen W. H.; Yu L. W.; Guilet S.; Cambril E.; Lafosse X.; Couraud L.; Bouchoule S.; et al.In situ observation of droplet nanofluidics for yielding low-dimensional nanomaterials. Appl. Surf. Sci. 2022, 573, 151510.10.1016/j.apsusc.2021.151510. DOI
Harmand J. C.; Patriarche G.; Glas F.; Panciera F.; Florea I.; Maurice J. L.; Travers L.; Ollivier Y. Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 2018, 121 (16), 166101.10.1103/PhysRevLett.121.166101. PubMed DOI
Xue Z.; Xu M.; Li X.; Wang J.; Jiang X.; Wei X.; Yu L.; Chen Q.; Wang J.; Xu J.; et al. In-Plane Self-Turning and Twin Dynamics Renders Large Stretchability to Mono-Like Zigzag Silicon Nanowire Springs. Adv. Funct. Mater. 2016, 26 (29), 5352–5359. 10.1002/adfm.201600780. DOI
Yu L.; Alet P.-J.; Picardi G.; Roca i Cabarrocas P. An In-Plane Solid-Liquid-Solid Growth Mode for Self-Avoiding Lateral Silicon Nanowires. Phys. Rev. Lett. 2009, 102 (12), 125501.10.1103/PhysRevLett.102.125501. PubMed DOI
Yu L.; i Cabarrocas P. R. Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires. Phys. Rev. B 2010, 81 (8), 085323.10.1103/PhysRevB.81.085323. DOI
Huang X.; Wang Z.-J.; Weinberg G.; Meng X.-M.; Willinger M.-G. In Situ Scanning Electron Microscopy Observation of Growth Kinetics and Catalyst Splitting in Vapor-Liquid-Solid Growth of Nanowires. Adv. Funct. Mater. 2015, 25 (37), 5979–5987. 10.1002/adfm.201502619. DOI
Kolibal M.; Novak L.; Shanley T.; Toth M.; Sikola T. Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy. Nanoscale 2016, 8 (1), 266–275. 10.1039/C5NR05152E. PubMed DOI
Pimonov V.; Tran H. N.; Monniello L.; Tahir S.; Michel T.; Podor R.; Odorico M.; Bichara C.; Jourdain V. Dynamic Instability of Individual Carbon Nanotube Growth Revealed by In Situ Homodyne Polarization Microscopy. Nano Lett. 2021, 21 (19), 8495–8502. 10.1021/acs.nanolett.1c03431. PubMed DOI
Chagnon D.; Pippel E.; Senz S.; Moutanabbir O. Metal Seed Loss Throughout the Nanowire Growth: Bulk Trapping and Surface Mass Transport. J. Phys. Chem. C 2016, 120 (5), 2932–2940. 10.1021/acs.jpcc.5b07361. DOI
Dubrovskii V. G.; Sibirev N. V.; Suris R. A.; Cirlin G. E.; Harmand J. C.; Ustinov V. M. Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition. Surf. Sci. 2007, 601 (18), 4395–4401. 10.1016/j.susc.2007.04.122. DOI
Choi J.-H.; Kim D.-Y.; Hockey B. J.; Wiederhorn S. M.; Handwerker C. A.; Blendell J. E.; Carter W. C.; Roosen A. R. Equilibrium Shape of Internal Cavities in Sapphire. J. Am. Ceram. Soc. 1997, 80 (1), 62–68. 10.1111/j.1151-2916.1997.tb02791.x. DOI
Dubrovskii V. G. Length distributions of nanowires: Effects of surface diffusion versus nucleation delay. J. Cryst. Growth 2017, 463, 139–144. 10.1016/j.jcrysgro.2017.02.014. DOI
Maliakkal C. B.; Hatui N.; Bapat R. D.; Chalke B. A.; Rahman A. A.; Bhattacharya A. The Mechanism of Ni-Assisted GaN Nanowire Growth. Nano Lett. 2016, 16 (12), 7632–7638. 10.1021/acs.nanolett.6b03604. PubMed DOI
Kolíbal M.; Kalousek R.; Vystavěl T.; Novák L.; Šikola T. Controlled faceting in ⟨110⟩ germanium nanowire growth by switching between vapor-liquid-solid and vapor-solid-solid growth. Appl. Phys. Lett. 2012, 100 (20), 203102.10.1063/1.4714765. DOI
Fröberg L. E.; Seifert W.; Johansson J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 2007, 76 (15), 153401.10.1103/PhysRevB.76.153401. DOI
Oh S. H.; Chisholm M. F.; Kauffmann Y.; Kaplan W. D.; Luo W. D.; Ruhle M.; Scheu C. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires. Science 2010, 330 (6003), 489–493. 10.1126/science.1190596. PubMed DOI
Consonni V.; Dubrovskii V. G.; Trampert A.; Geelhaar L.; Riechert H. Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 2012, 85 (15), 155313.10.1103/PhysRevB.85.155313. DOI
Dubrovskii V. G.Chapter One - Theory of VLS Growth of Compound Semiconductors. In Semiconductors and Semimetals, 1st ed.; Fontcuberta i Morral A.; Dayeh S. A., Jagadish C., Eds.; Elsevier: Waltham, MA, 2015; Vol. 93, pp 1–78.
Johansson J.; Svensson C. P. T.; Mårtensson T.; Samuelson L.; Seifert W. Mass Transport Model for Semiconductor Nanowire Growth. J. Phys. Chem. B 2005, 109 (28), 13567–13571. 10.1021/jp051702j. PubMed DOI
Persson A. I.; Fröberg L. E.; Samuelson L.; Linke H. The fabrication of dense and uniform InAs nanowire arrays. Nanotechnology 2009, 20 (22), 225304.10.1088/0957-4484/20/22/225304. PubMed DOI
Schubert L.; Werner P.; Zakharov N. D.; Gerth G.; Kolb F. M.; Long L.; Gösele U.; Tan T. Y. Silicon nanowhiskers grown on ⟨111⟩Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 2004, 84 (24), 4968–4970. 10.1063/1.1762701. DOI
Givargizov E.I.; Babasiam P.A. Negative whiskers formed by solid-liquid-vapor mechanism during vaporization of ZnS. J. Cryst. Growth 1977, 37, 140–146. 10.1016/0022-0248(77)90073-2. DOI
O’Toole M.; Boland J. J. A solid-liquid-vapor mechanism for anisotropic silicon etching. Appl. Phys. Lett. 2008, 93 (26), 263107.10.1063/1.3055606. DOI
Wagner R. S. A solid-liquid-vapor etching process. J. Cryst. Growth 1968, 3–4, 159–161. 10.1016/0022-0248(68)90117-6. DOI
Yazdi S.; Daniel J. R.; Large N.; Schatz G. C.; Boudreau D.; Ringe E. Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. Nano Lett. 2016, 16 (11), 6939–6945. 10.1021/acs.nanolett.6b02946. PubMed DOI
Hudak B. M.; Chang Y.-J.; Yu L.; Li G.; Edwards D. N.; Guiton B. S. Real-Time Observation of the Solid-Liquid-Vapor Dissolution of Individual Tin(IV) Oxide Nanowires. ACS Nano 2014, 8 (6), 5441–5448. 10.1021/nn5007804. PubMed DOI