• This record comes from PubMed

Real-Time Study of Surface-Guided Nanowire Growth by In Situ Scanning Electron Microscopy

. 2022 Nov 22 ; 16 (11) : 18757-18766. [epub] 20221028

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Surface-guided growth has proven to be an efficient approach for the production of nanowire arrays with controlled orientations and their large-scale integration into electronic and optoelectronic devices. Much has been learned about the different mechanisms of guided nanowire growth by epitaxy, graphoepitaxy, and artificial epitaxy. A model describing the kinetics of surface-guided nanowire growth has been recently reported. Yet, many aspects of the surface-guided growth process remain unclear due to a lack of its observation in real time. Here we observe how surface-guided nanowires grow in real time by in situ scanning electron microscopy (SEM). Movies of ZnSe surface-guided nanowires growing on periodically faceted substrates of annealed M-plane sapphire clearly show how the nanowires elongate along the substrate nanogrooves while pushing the catalytic Au nanodroplet forward at the tip of the nanowire. The movies reveal the timing between competing processes, such as planar vs nonplanar growth, catalyst-selective vapor-liquid-solid elongation vs nonselective vapor-solid thickening, and the effect of topographic discontinuities of the substrate on the growth direction, leading to the formation of kinks and loops. Contrary to some observations for nonplanar nanowire growth, planar nanowires are shown to elongate at a constant rate and not by jumps. A decrease in precursor concentration as it is consumed after long reaction time causes the nanowires to shrink back instead of growing, thus indicating that the process is reversible and takes place near equilibrium. This real-time study of surface-guided growth, enabled by in situ SEM, enables a better understanding of the formation of nanostructures on surfaces.

See more in PubMed

Duan X.; Huang Y.; Cui Y.; Wang J.; Lieber C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409 (6816), 66–69. 10.1038/35051047. PubMed DOI

Huang M. H.; Mao S.; Feick H.; Yan H.; Wu Y.; Kind H.; Weber E.; Russo R.; Yang P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292 (5523), 1897–1899. 10.1126/science.1060367. PubMed DOI

Schvartzman M.; Tsivion D.; Mahalu D.; Raslin O.; Joselevich E. Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15195–15200. 10.1073/pnas.1306426110. PubMed DOI PMC

Kim D. R.; Lee C. H.; Zheng X. Direct Growth of Nanowire Logic Gates and Photovoltaic Devices. Nano Lett. 2010, 10 (3), 1050–1054. 10.1021/nl100011z. PubMed DOI

Gazibegovic S.; Car D.; Zhang H.; Balk S. C.; Logan J. A.; de Moor M. W. A.; Cassidy M. C.; Schmits R.; Xu D.; Wang G.; et al. Epitaxy of advanced nanowire quantum devices. Nature 2017, 548, 434.10.1038/nature23468. PubMed DOI

Gül Ö.; Zhang H.; Bommer J. D. S.; de Moor M. W. A.; Car D.; Plissard S. R.; Bakkers E. P. A. M.; Geresdi A.; Watanabe K.; Taniguchi T.; et al. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 2018, 13 (3), 192–197. 10.1038/s41565-017-0032-8. PubMed DOI

Wagner R. S.; Ellis W. C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4 (5), 89–90. 10.1063/1.1753975. DOI

Ben-Zvi R.; Burrows H.; Schvartzman M.; Bitton O.; Pinkas I.; Kaplan-Ashiri I.; Brontvein O.; Joselevich E. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy. ACS Nano 2019, 13 (5), 5572–5582. 10.1021/acsnano.9b00538. PubMed DOI PMC

Tsivion D.; Schvartzman M.; Popovitz-Biro R.; von Huth P.; Joselevich E. Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations. Science 2011, 333 (6045), 1003–1007. 10.1126/science.1208455. PubMed DOI

Alus L.; Brontvein O.; Kossoy A.; Feldman Y.; Joselevich E.. Aligned Growth of Semiconductor Nanowires on Scratched Amorphous Substrates. Adv. Funct. Mater. 2021, 31 ( (47), ), 2103950.10.1002/adfm.202103950. DOI

Nikoobakht B.; Michaels C. A.; Stranick S. J.; Vaudin M. D. Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 2004, 85 (15), 3244–3246. 10.1063/1.1803951. DOI

Fortuna S. A.; Wen J.; Chun I. S.; Li X. Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable. Nano Lett. 2008, 8 (12), 4421–4427. 10.1021/nl802331m. PubMed DOI

Tsivion D.; Joselevich E. Guided Growth of Epitaxially Coherent GaN Nanowires on SiC. Nano Lett. 2013, 13 (11), 5491–5496. 10.1021/nl4030769. PubMed DOI

Tsivion D.; Joselevich E. Guided Growth of Horizontal GaN Nanowires on Spinel with Orientation-Controlled Morphologies. J. Phys. Chem. C 2014, 118 (33), 19158–19164. 10.1021/jp504785v. DOI

Neeman L.; Ben-Zvi R.; Rechav K.; Popovitz-Biro R.; Oron D.; Joselevich E. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry. Nano Lett. 2017, 17 (2), 842–850. 10.1021/acs.nanolett.6b04087. PubMed DOI PMC

Tsivion D.; Schvartzman M.; Popovitz-Biro R.; Joselevich E. Guided Growth of Horizontal ZnO Nanowires with Controlled Orientations on Flat and Faceted Sapphire Surfaces. ACS Nano 2012, 6 (7), 6433–6445. 10.1021/nn3020695. PubMed DOI

Oksenberg E.; Popovitz-Biro R.; Rechav K.; Joselevich E. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue-UV Photodetectors. Adv. Mater. 2015, 27 (27), 3999–4005. 10.1002/adma.201500736. PubMed DOI

Reut G.; Oksenberg E.; Popovitz-Biro R.; Rechav K.; Joselevich E. Guided Growth of Horizontal p-Type ZnTe Nanowires. J. Phys. Chem. C 2016, 120 (30), 17087–17100. 10.1021/acs.jpcc.6b05191. PubMed DOI PMC

Shalev E.; Oksenberg E.; Rechav K.; Popovitz-Biro R.; Joselevich E. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors. ACS Nano 2017, 11 (1), 213–220. 10.1021/acsnano.6b04469. PubMed DOI PMC

Xu J.; Oksenberg E.; Popovitz-Biro R.; Rechav K.; Joselevich E. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls. J. Am. Chem. Soc. 2017, 139 (44), 15958–15967. 10.1021/jacs.7b09423. PubMed DOI

Rothman A.; Forsht T.; Danieli Y.; Popovitz-Biro R.; Rechav K.; Houben L.; Joselevich E. Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfaces. J. Phys. Chem. C 2018, 122 (23), 12413–12420. 10.1021/acs.jpcc.8b04063. DOI

Goren-Ruck L.; Tsivion D.; Schvartzman M.; Popovitz-Biro R.; Joselevich E. Guided Growth of Horizontal GaN Nanowires on Quartz and Their Transfer to Other Substrates. ACS Nano 2014, 8 (3), 2838–2847. 10.1021/nn4066523. PubMed DOI

Oksenberg E.; Martí-Sánchez S.; Popovitz-Biro R.; Arbiol J.; Joselevich E. Surface-Guided Core-Shell ZnSe@ZnTe Nanowires as Radial p-n Heterojunctions with Photovoltaic Behavior. ACS Nano 2017, 11 (6), 6155–6166. 10.1021/acsnano.7b02199. PubMed DOI

Xu J.; Rechav K.; Popovitz-Biro R.; Nevo I.; Feldman Y.; Joselevich E. High-Gain 200 ns Photodetectors from Self-Aligned CdS-CdSe Core-Shell Nanowalls. Adv. Mater. 2018, 30 (20), 1800413.10.1002/adma.201800413. PubMed DOI

Zhou H.; Yuan S.; Wang X.; Xu T.; Wang X.; Li H.; Zheng W.; Fan P.; Li Y.; Sun L.; et al. Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano 2017, 11 (2), 1189–1195. 10.1021/acsnano.6b07374. PubMed DOI

Wang Y.; Sun X.; Shivanna R.; Yang Y.; Chen Z.; Guo Y.; Wang G.-C.; Wertz E.; Deschler F.; Cai Z.; et al. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. Nano Lett. 2016, 16 (12), 7974–7981. 10.1021/acs.nanolett.6b04297. PubMed DOI

Oksenberg E.; Sanders E.; Popovitz-Biro R.; Houben L.; Joselevich E. Surface-Guided CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Lett. 2018, 18 (1), 424–433. 10.1021/acs.nanolett.7b04310. PubMed DOI

Chen J.; Fu Y.; Samad L.; Dang L.; Zhao Y.; Shen S.; Guo L.; Jin S. Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2017, 17 (1), 460–466. 10.1021/acs.nanolett.6b04450. PubMed DOI

Aseev P.; Fursina A.; Boekhout F.; Krizek F.; Sestoft J. E.; Borsoi F.; Heedt S.; Wang G.; Binci L.; Martí-Sánchez S.; et al. Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks. Nano Lett. 2019, 19 (1), 218–227. 10.1021/acs.nanolett.8b03733. PubMed DOI PMC

Friedl M.; Cerveny K.; Weigele P.; Tütüncüoglu G.; Martí-Sánchez S.; Huang C.; Patlatiuk T.; Potts H.; Sun Z.; Hill M. O.; et al. Template-Assisted Scalable Nanowire Networks. Nano Lett. 2018, 18 (4), 2666–2671. 10.1021/acs.nanolett.8b00554. PubMed DOI

Yu L.; Xu M.; Xu J.; Xue Z.; Fan Z.; Picardi G.; Fortuna F.; Wang J.; Xu J.; Shi Y.; et al. In-Plane Epitaxial Growth of Silicon Nanowires and Junction Formation on Si(100) Substrates. Nano Lett. 2014, 14 (11), 6469–6474. 10.1021/nl503001g. PubMed DOI

Xu M.; Xue Z.; Wang J.; Zhao Y.; Duan Y.; Zhu G.; Yu L.; Xu J.; Wang J.; Shi Y.; et al. Heteroepitaxial Writing of Silicon-on-Sapphire Nanowires. Nano Lett. 2016, 16 (12), 7317–7324. 10.1021/acs.nanolett.6b02004. PubMed DOI

Rothman A.; Manis J.; Dubrovskii V. G.; Sikola T.; Mach J.; Joslevich E.. Kinetics of Guided Growth of Horizontal GaN Nanowires on Flat and Faceted Sapphire Surfaces. Nanomaterials-Basel 2021, 11 ( (3), ), 624.10.3390/nano11030624. PubMed DOI PMC

Rothman A.; Dubrovskii V. G.; Joselevich E. Kinetics and mechanism of planar nanowire growth. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (1), 152.10.1073/pnas.1911505116. PubMed DOI PMC

Wen C.-Y.; Reuter M. C.; Bruley J.; Tersoff J.; Kodambaka S.; Stach E. A.; Ross F. M. Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires. Science 2009, 326 (5957), 1247–1250. 10.1126/science.1178606. PubMed DOI

Kim B. J.; Tersoff J.; Kodambaka S.; Reuter M. C.; Stach E. A.; Ross F. M. Kinetics of Individual Nucleation Events Observed in Nanoscale Vapor-Liquid-Solid Growth. Science 2008, 322 (5904), 1070–1073. 10.1126/science.1163494. PubMed DOI

Hannon J. B.; Kodambaka S.; Ross F. M.; Tromp R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440 (7080), 69–71. 10.1038/nature04574. PubMed DOI

Harmand J. C.; Patriarche G.; Glas F.; Panciera F.; Florea I.; Maurice J. L.; Travers L.; Ollivier Y.. Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 2018, 121 ( (16), ),10.1103/PhysRevLett.121.166101. PubMed DOI

Fan Z.; Maurice J. L.; Florea I.; Chen W. H.; Yu L. W.; Guilet S.; Cambril E.; Lafosse X.; Couraud L.; Bouchoule S.; et al.In situ observation of droplet nanofluidics for yielding low-dimensional nanomaterials. Appl. Surf. Sci. 2022, 573, 151510.10.1016/j.apsusc.2021.151510. DOI

Harmand J. C.; Patriarche G.; Glas F.; Panciera F.; Florea I.; Maurice J. L.; Travers L.; Ollivier Y. Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 2018, 121 (16), 166101.10.1103/PhysRevLett.121.166101. PubMed DOI

Xue Z.; Xu M.; Li X.; Wang J.; Jiang X.; Wei X.; Yu L.; Chen Q.; Wang J.; Xu J.; et al. In-Plane Self-Turning and Twin Dynamics Renders Large Stretchability to Mono-Like Zigzag Silicon Nanowire Springs. Adv. Funct. Mater. 2016, 26 (29), 5352–5359. 10.1002/adfm.201600780. DOI

Yu L.; Alet P.-J.; Picardi G.; Roca i Cabarrocas P. An In-Plane Solid-Liquid-Solid Growth Mode for Self-Avoiding Lateral Silicon Nanowires. Phys. Rev. Lett. 2009, 102 (12), 125501.10.1103/PhysRevLett.102.125501. PubMed DOI

Yu L.; i Cabarrocas P. R. Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires. Phys. Rev. B 2010, 81 (8), 085323.10.1103/PhysRevB.81.085323. DOI

Huang X.; Wang Z.-J.; Weinberg G.; Meng X.-M.; Willinger M.-G. In Situ Scanning Electron Microscopy Observation of Growth Kinetics and Catalyst Splitting in Vapor-Liquid-Solid Growth of Nanowires. Adv. Funct. Mater. 2015, 25 (37), 5979–5987. 10.1002/adfm.201502619. DOI

Kolibal M.; Novak L.; Shanley T.; Toth M.; Sikola T. Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy. Nanoscale 2016, 8 (1), 266–275. 10.1039/C5NR05152E. PubMed DOI

Pimonov V.; Tran H. N.; Monniello L.; Tahir S.; Michel T.; Podor R.; Odorico M.; Bichara C.; Jourdain V. Dynamic Instability of Individual Carbon Nanotube Growth Revealed by In Situ Homodyne Polarization Microscopy. Nano Lett. 2021, 21 (19), 8495–8502. 10.1021/acs.nanolett.1c03431. PubMed DOI

Chagnon D.; Pippel E.; Senz S.; Moutanabbir O. Metal Seed Loss Throughout the Nanowire Growth: Bulk Trapping and Surface Mass Transport. J. Phys. Chem. C 2016, 120 (5), 2932–2940. 10.1021/acs.jpcc.5b07361. DOI

Dubrovskii V. G.; Sibirev N. V.; Suris R. A.; Cirlin G. E.; Harmand J. C.; Ustinov V. M. Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition. Surf. Sci. 2007, 601 (18), 4395–4401. 10.1016/j.susc.2007.04.122. DOI

Choi J.-H.; Kim D.-Y.; Hockey B. J.; Wiederhorn S. M.; Handwerker C. A.; Blendell J. E.; Carter W. C.; Roosen A. R. Equilibrium Shape of Internal Cavities in Sapphire. J. Am. Ceram. Soc. 1997, 80 (1), 62–68. 10.1111/j.1151-2916.1997.tb02791.x. DOI

Dubrovskii V. G. Length distributions of nanowires: Effects of surface diffusion versus nucleation delay. J. Cryst. Growth 2017, 463, 139–144. 10.1016/j.jcrysgro.2017.02.014. DOI

Maliakkal C. B.; Hatui N.; Bapat R. D.; Chalke B. A.; Rahman A. A.; Bhattacharya A. The Mechanism of Ni-Assisted GaN Nanowire Growth. Nano Lett. 2016, 16 (12), 7632–7638. 10.1021/acs.nanolett.6b03604. PubMed DOI

Kolíbal M.; Kalousek R.; Vystavěl T.; Novák L.; Šikola T. Controlled faceting in ⟨110⟩ germanium nanowire growth by switching between vapor-liquid-solid and vapor-solid-solid growth. Appl. Phys. Lett. 2012, 100 (20), 203102.10.1063/1.4714765. DOI

Fröberg L. E.; Seifert W.; Johansson J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 2007, 76 (15), 153401.10.1103/PhysRevB.76.153401. DOI

Oh S. H.; Chisholm M. F.; Kauffmann Y.; Kaplan W. D.; Luo W. D.; Ruhle M.; Scheu C. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires. Science 2010, 330 (6003), 489–493. 10.1126/science.1190596. PubMed DOI

Consonni V.; Dubrovskii V. G.; Trampert A.; Geelhaar L.; Riechert H. Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 2012, 85 (15), 155313.10.1103/PhysRevB.85.155313. DOI

Dubrovskii V. G.Chapter One - Theory of VLS Growth of Compound Semiconductors. In Semiconductors and Semimetals, 1st ed.; Fontcuberta i Morral A.; Dayeh S. A., Jagadish C., Eds.; Elsevier: Waltham, MA, 2015; Vol. 93, pp 1–78.

Johansson J.; Svensson C. P. T.; Mårtensson T.; Samuelson L.; Seifert W. Mass Transport Model for Semiconductor Nanowire Growth. J. Phys. Chem. B 2005, 109 (28), 13567–13571. 10.1021/jp051702j. PubMed DOI

Persson A. I.; Fröberg L. E.; Samuelson L.; Linke H. The fabrication of dense and uniform InAs nanowire arrays. Nanotechnology 2009, 20 (22), 225304.10.1088/0957-4484/20/22/225304. PubMed DOI

Schubert L.; Werner P.; Zakharov N. D.; Gerth G.; Kolb F. M.; Long L.; Gösele U.; Tan T. Y. Silicon nanowhiskers grown on ⟨111⟩Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 2004, 84 (24), 4968–4970. 10.1063/1.1762701. DOI

Givargizov E.I.; Babasiam P.A. Negative whiskers formed by solid-liquid-vapor mechanism during vaporization of ZnS. J. Cryst. Growth 1977, 37, 140–146. 10.1016/0022-0248(77)90073-2. DOI

O’Toole M.; Boland J. J. A solid-liquid-vapor mechanism for anisotropic silicon etching. Appl. Phys. Lett. 2008, 93 (26), 263107.10.1063/1.3055606. DOI

Wagner R. S. A solid-liquid-vapor etching process. J. Cryst. Growth 1968, 3–4, 159–161. 10.1016/0022-0248(68)90117-6. DOI

Yazdi S.; Daniel J. R.; Large N.; Schatz G. C.; Boudreau D.; Ringe E. Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. Nano Lett. 2016, 16 (11), 6939–6945. 10.1021/acs.nanolett.6b02946. PubMed DOI

Hudak B. M.; Chang Y.-J.; Yu L.; Li G.; Edwards D. N.; Guiton B. S. Real-Time Observation of the Solid-Liquid-Vapor Dissolution of Individual Tin(IV) Oxide Nanowires. ACS Nano 2014, 8 (6), 5441–5448. 10.1021/nn5007804. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...