Tackling the translational challenges of multi-omics research in the realm of European personalised medicine: A workshop report
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36310597
PubMed Central
PMC9608444
DOI
10.3389/fmolb.2022.974799
PII: 974799
Knihovny.cz E-zdroje
- Klíčová slova
- EU initiatives, bottlenecks in health data, multi-omics, personalised medicine, research infrastructures, translational medicine,
- Publikační typ
- časopisecké články MeSH
Personalised medicine (PM) presents a great opportunity to improve the future of individualised healthcare. Recent advances in -omics technologies have led to unprecedented efforts characterising the biology and molecular mechanisms that underlie the development and progression of a wide array of complex human diseases, supporting further development of PM. This article reflects the outcome of the 2021 EATRIS-Plus Multi-omics Stakeholder Group workshop organised to 1) outline a global overview of common promises and challenges that key European stakeholders are facing in the field of multi-omics research, 2) assess the potential of new technologies, such as artificial intelligence (AI), and 3) establish an initial dialogue between key initiatives in this space. Our focus is on the alignment of agendas of European initiatives in multi-omics research and the centrality of patients in designing solutions that have the potential to advance PM in long-term healthcare strategies.
Biomarkers and Therapeutic Targets Group Ramon and Cajal Health Research Institute Madrid Spain
Centro de Investigacion Biomedica en Red Cancer Madrid Spain
CNAG CRG Centre for Genomic Regulation Barcelona Spain
ELIXIR Hub Hinxton United Kingdom
European Infrastructure for Translational Medicine Amsterdam Netherlands
HiLIFE Helsinki Institute of Life Science University of Helsinki Helsinki Finland
iCAN Digital Precision Cancer Medicine Flagship University of Helsinki Helsinki Finland
Institucio Catalana de Recerca i Estudis Avançats Barcelona Spain
Institute for Molecular Medicine Finland FIMM University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Abul-Husn N. S., Kenny E. E. (2019). Personalized medicine and the power of electronic health Records. Cell 177, 58–69. 10.1016/J.CELL.2019.02.039 PubMed DOI PMC
Adamo J. E., Bienvenu Ii R. V., Dolz F., Liebman M., Nilsen W., Steele S. J. (2020). Translation of digital health technologies to advance precision medicine: Informing regulatory science. Digit. Biomark. 4, 1–12. 10.1159/000505289 PubMed DOI PMC
Adamo J. E., Bienvenu R. V., Fields F. O., Ghosh S., Jones C. M., Liebman M., et al. (2018). The integration of emerging omics approaches to advance precision medicine: How can regulatory science help? J. Clin. Transl. Sci. 2, 295–300. 10.1017/CTS.2018.330 PubMed DOI PMC
Alves I. T. S., Condinho M., Custódio S., Pereira B. F., Fernandes R., Goncalves V., et al. (2018). Genetics of personalized medicine: Cancer and rare diseases. Cell. Oncol. 41, 335–341. 10.1007/S13402-018-0379-3 PubMed DOI
Aslam B., Basit M., Nisar M. A., Khurshid M., Rasool M. H. (2017). Proteomics: Technologies and their applications. J. Chromatogr. Sci. 55, 182–196. 10.1093/CHROMSCI/BMW167 PubMed DOI
Banzi R., Gerardi C., Fratelli M. (2020). Methodological approaches for personalised medicine: Protocol for a series of scoping reviews. Protocol 2. 10.5281/ZENODO.3770937 DOI
Berger M. F., Mardis E. R. (2018). The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 15, 353–365. 10.1038/S41571-018-0002-6 PubMed DOI PMC
Chen R., Mias G. I., Li-Pook-Than J., Jiang L., Lam H. Y. K., et al. (2012). Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148 (6), 1293–1307. 10.1016/j.cell.2012.02.009 PubMed DOI PMC
Chen R., Snyder M. (2013). Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 73–82. 10.1002/WSBM.1198 PubMed DOI PMC
Conesa A., Beck S. (2019). Making multi-omics data accessible to researchers. Sci. Data 6, 251–254. 10.1038/s41597-019-0258-4 PubMed DOI PMC
Corpas M., Kovalevskaya N. V., McMurray A., Nielsen F. G. G. (2018). A FAIR guide for data providers to maximise sharing of human genomic data. PLoS Comput. Biol. 14, e1005873. 10.1371/JOURNAL.PCBI.1005873 PubMed DOI PMC
Davies H., Bignell G. R., Cox C., Watt S., Andrew P., Hall S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417 (6892), 949–954. 10.1038/nature00766 PubMed DOI
EATRIS (2022). EATRIS and EUPATI sign collaboration agreement, ensuring stronger patient training in translational research - EATRIS. Available at: https://eatris.eu/news/eatris-and-eupati-sign-collaboration-agreement-ensuring-stronger-patient-training-in-translational-research/(accessed Apr 25, 2022).
EATRIS (2022). EATRIS and the European Patients’ Forum sign collaboration agreement, ensuring stronger patient involvement throughout the research process. Available at: https://eatris.eu/wp-content/uploads/2019/07/EPF_EATRIS_Collaboration_Release.pdf (accessed Apr 25, 2022).
EATRIS (2022). EATRIS-plus - flagship in personalised medicine. Available at: https://eatris.eu/projects/eatris-plus/(accessed Apr 25, 2022).
EATRIS (2021). Patient engagement open Forum 2021. Available at: https://eatris.eu/events/patient-engagement-open-forum-2021/(accessed Apr 25, 2022).
Endrullat C., Glökler J., Franke P., Frohme M. (2016). Standardization and quality management in next-generation sequencing. Appl. Transl. Genom. 10, 2–9. 10.1016/J.ATG.2016.06.001 PubMed DOI PMC
European Commission. 2021. Personalised medicine | public health. Available at: https://ec.europa.eu/health/human-use/personalised-medicine_en (accessed Dec 20, 2021).
FAIR (2021). FAIR principles - go. Available at: https://www.go-fair.org/fair-principles/(accessed Dec 20, 2021).
Fischer P., Stöhr M. R., Gall H., Michel-Backofen A., Majeed R. W. (2020). Data integration into OMOP CDM for heterogeneous clinical data collections via HL7 FHIR bundles and XSLT. Stud. Health Technol. Inf. 270, 138–142. 10.3233/SHTI200138 PubMed DOI
Freedman L. P., Cockburn I. M., Simcoe T. S. (2015). The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165–e1002169. 10.1371/JOURNAL.PBIO.1002165 PubMed DOI PMC
Gavan S. P., Thompson A. J., Payne K. (2018). The economic case for precision medicine. Expert Rev. Precis. Med. Drug Dev. 3, 1–9. 10.1080/23808993.2018.1421858 PubMed DOI PMC
Glaab E., Rauschenberger A., Banzi R., Gerardi C., Garcia P., Demotes J. (2021). Biomarker discovery studies for patient stratification using machine learning analysis of omics data: A scoping review. BMJ Open 11, e053674. 10.1136/bmjopen-2021-053674 PubMed DOI PMC
Goetz L. H., Schork N. J. (2018). Personalized medicine: Motivation, challenges and progress. Fertil. Steril. 109, 952–963. 10.1016/J.FERTNSTERT.2018.05.006 PubMed DOI PMC
Jandoo T. (2020). WHO guidance for digital health: What it means for researchers. Digit. Health 6, 2055207619898984. 10.1177/2055207619898984 PubMed DOI PMC
Kalisky T., Oriel S., Bar-Lev T. H., Ben-Haim N., Trink A., Wineberg Y., et al. (2018). A brief review of single-cell transcriptomic technologies. Brief. Funct. Genomics 17, 64–76. 10.1093/BFGP/ELX019 PubMed DOI
Karczewski K. J., Snyder M. P. (2018). Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310. 10.1038/nrg.2018.4 PubMed DOI PMC
Kisor D., Ehret M. (2020). The personalized medicine report. Oppor. Challenges Future. https://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/PMC_The_Personalized_Medicine_Report_Opportunity_Challenges_and_the_Future.pdf.
Knowles L., Luth W., Bubela T. (2017). Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. J. Law Biosci. 4, 453–506. 10.1093/JLB/LSX030 PubMed DOI PMC
Krassowski M., Das V., Sahu S. K., Misra B. (2020). State of the field in multi-omics research: From computational needs to data mining and sharing. Front. Genet. 11, 1598. 10.3389/fgene.2020.610798 PubMed DOI PMC
Li B., He X., Jia W., Li H. (2017). Novel applications of metabolomics in personalized medicine: A mini-review. Molecules 22, E1173. 10.3390/MOLECULES22071173 PubMed DOI PMC
Lloyd-Price J., Arze C., Ananthakrishnan A. N., Poon W., Holly C., Kevin S., et al. (2019). Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569 (7758), 655–662. 10.1038/s41586-019-1237-9 PubMed DOI PMC
Lubin I. M., Aziz N., Babb L. J., Ballinger D., Bisht H., Church D. M., et al. (2017). Principles and recommendations for standardizing the use of the next-generation sequencing variant file in clinical settings. J. Mol. Diagn. 19, 417–426. 10.1016/J.JMOLDX.2016.12.001 PubMed DOI PMC
Misra B. B., Langefeld C., Olivier M., Cox L. A. (2019). Integrated omics: Tools, advances and future approaches. J. Mol. Endocrinol. 62, R21–R45. 10.1530/JME-18-0055 PubMed DOI
Olivier M., Asmis R., Hawkins G. A., Howard T. D., Cox L. A. (2019). The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci. 20, 4781. 10.3390/IJMS20194781 PubMed DOI PMC
Panahiazar M., Taslimitehrani V., Jadhav A., Pathak J. (2015). “Empowering personalized medicine with big data and semantic web technology: Promises, challenges, and use cases,” in Proc. IEEE Int. Conf. Big Data, Washington, DC, USA, 27-30 October 2014, 790–795. 10.1109/BIGDATA.2014.7004307 PubMed DOI PMC
Pegram M. D., Pauletti G., Slamon D. J. (1998). HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res. Treat. 52 (1-3), 65–77. 10.1023/a:1006111117877 PubMed DOI
Prasser F., Kohlbacher O., Mansmann U., Bauer B., Kuhn K. A. (2018). Data integration for future medicine (DIFUTURE). Methods Inf. Med. 57, e57–e65. 10.3414/ME17-02-0022 PubMed DOI PMC
Quackenbush J. (2004). Data standards for ‘omic’ science. Nat. Biotechnol. 22, 613–614. 10.1038/nbt0504-613 PubMed DOI
Sadee W. (2011). Genomics and personalized medicine. Int. J. Pharm. 415, 2–4. 10.1016/J.IJPHARM.2011.04.048 PubMed DOI
Saunders G., Baudis M., Becker R., Beltran S., Beroud C., Birney E., et al. (2019). Leveraging European infrastructures to access 1 million human genomes by 2022. Nat. Rev. Genet. 20, 693–701. 10.1038/S41576-019-0156-9 PubMed DOI PMC
Shendure J., Findlay G. M., Snyder M. W. (2019). Genomic medicine–progress, pitfalls, and promise. Cell 177, 45–57. 10.1016/J.CELL.2019.02.003 PubMed DOI PMC
Simons K. (2018). How can omic science be improved? Proteomics 18, e1800039. 10.1002/PMIC.201800039 PubMed DOI
Tarailo-Graovac M., Shyr C., Ross C. J., Horvath G. A., Salvarinova R., Ye X. C., et al. (2016). Exome sequencing and the management of neurometabolic disorders. N. Engl. J. Med. 374 (23), 2246–2255. 10.1056/NEJMoa1515792 PubMed DOI PMC
van 't Veer L. J., Dai H., van de Vijver M. J., He D., Hart M., Mao M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 (6871), 530–536. 10.1038/415530a PubMed DOI
Van Gool A. J., Bietrix F., Caldenhoven E., Zatloukal K., Scherer A., Litton J. E., et al. (2017). Bridging the translational innovation gap through good biomarker practice. Nat. Rev. Drug Discov. 16, 587–588. 10.1038/NRD.2017.72 PubMed DOI
Veenstra T. D. (2021). Omics in systems biology: Current progress and future outlook. Proteomics 21, e2000235. 10.1002/pmic.202000235 PubMed DOI
Vlahou A., Hallinan D., Apweiler R., Argiles A., Beige J., Benigni A., et al. (2021). Data sharing under the general data protection regulation: Time to harmonize law and research ethics? Hypertens. 1979 77, 1029–1035. 10.1161/HYPERTENSIONAHA.120.16340 PubMed DOI PMC
Wenk M. R. (2005). The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610. 10.1038/NRD1776 PubMed DOI
Wilkinson M. D., Dumontier M., Aalbersberg IjJ., Appleton G., Axton M., Baak A., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018–160019. 10.1038/sdata.2016.18 PubMed DOI PMC