Anatomical inferences on aerial bud protection of three Eugenia shrub species from the Cerrado
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
142505/2019-6
Conselho Nacional de Desenvolvimento Científico e Tecnológico
311721/2018-4
Conselho Nacional de Desenvolvimento Científico e Tecnológico
88882.378309/2019-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Finance Code 001
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
2018/18887-5
Fundação de Amparo à Pesquisa do Estado de São Paulo
PubMed
36314866
DOI
10.1111/plb.13483
Knihovny.cz E-zdroje
- Klíčová slova
- Accessory buds, Myrtaceae, aerial buds, colleters, phenolic compounds, trichomes,
- MeSH
- Eugenia * MeSH
- listy rostlin metabolismus MeSH
- meristém MeSH
- požáry * MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
Location and degree of protection of aerial buds are important functional traits in disturbance- or stress-prone environments since aerial buds ensure the development of new organs under favourable growing conditions. This study was carried out in a Brazilian Cerrado area under regeneration after long-term Pinus cultivation, where the trees were clear-cut in 2012 and the remaining material was burned in 2014. After the fire treatment, several species resprouted from belowground organs and their aboveground organs were directly exposed to full sunlight. We collected 15 terminal branches with fully expanded leaves from three individuals of each of three Eugenia species to investigate if those with well-developed belowground organs invest in bark for aboveground bud protection. The samples were analysed using light and electron microscopy. In addition to terminal and axillary buds, all species presented accessory buds, and the number varied according to the node analysed. None of the aerial buds were protected by bark, but all were well protected by cataphylls and densely pubescent leaf primordia. There were also inter- and intra-petiolar colleters that released a mucilaginous protein exudate. The distance between the shoot apical meristem and the outer surface was longer in the terminal bud than in axillary buds. The bud leaf primordia covering the shoot apical meristem had a thick cuticle, unicellular non-glandular trichomes that accumulate phenolic and lipophilic compounds, and secretory cavities. Our study shows that all three Eugenia species studied here had highly protected aerial buds allocated from belowground organs. These morphological traits may improve the chances of the species' persistence in areas subjected to frost events, low relative humidity, high irradiance and harmful UV levels.
Zobrazit více v PubMed
Almeida A.L., Paiva E.A.S. (2019) Colleters in Mabea fistulifera Mart. (Euphorbiaceae): anatomy and biology of the secretory process. Flora, 258, 151439.
Ballego-Campos I., Paiva É.A.S. (2018) Mucilage secretion in the inflorescences of Aechmea blanchetiana: evidence of new functions of scales in Bromeliaceae. Flora, 246, 1-9.
Bell A.D., Bell A., Dines T.D. (1999) Branch construction and bud defence status at the canopy surface of a west African rainforest. Biological Journal of the Linnean Society, 66, 481-499.
Brando P.M., Durigan G. (2005) Changes in cerrado vegetation after disturbance by frost (São Paulo State, Brazil). Plant Ecology, 175, 205-215.
Burrows G.E. (2008) Syncarpia and Tristaniopsis (Myrtaceae) possess specialised fire-resistant epicormic structures. Australian Journal of Botany, 56, 254-264.
Burrows G.E. (2013) Buds, bushfires and resprouting in the eucalypts. Australian Journal of Botany, 61, 331-349.
Burrows G.E., Chisnall L.K. (2016) Buds buried in bark: the reason why Quercus suber (cork oak) is an excellent post-fire epicormic resprouter. Trees, 30, 241-254.
Burrows G.E., Hornby S.K., Waters D.A., Bellairs S.M., Prior L.D., Bowman D.M.J.S. (2008) Leaf axil anatomy and bud reserves in 21 Myrtaceae species from northern Australia. International Journal of Plant Sciences, 169, 1174-1186.
Cain A.J. (1947) The use of Nile blue in the examination of lipoids. Journal of Cell Science, s3-88, 383-392.
Castro M.D.M., Demarco D. (2008) Phenolic compounds produced by secretory structures in plants: a brief review. Natural Product Communications, 3, 1273-1284.
Castro Miguel E., Klein D.E., de Oliveira M.A., da Cunha M. (2010) Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae). Brazilian Journal of Botany, 33, 425-436.
Charles-Dominique T., Beckett H., Midgley G.F., Bond W.J. (2015) Bud protection: a key trait for species sorting in a forest-savanna mosaic. New Phytologist, 207, 1052-1060.
Chiminazzo M.A., Bombo A.B., Charles-Dominique T., Fidelis A. (2021) Your best buds are worth protecting: variation in bud protection in a fire-prone cerrado system. Functional Ecology, 231, 1278-1295.
Ciccarelli D., Garbari F., Pagni A.M. (2008) The flower of Myrtus communis (Myrtaceae): secretory structures, unicellular papillae, and their ecological role. Flora, 203, 85-93.
Clarke P.J., Lawes M.J., Midgley J.J., Lamont B.B., Ojeda F., Burrows G.E., Enright N.J., Knox K.J.E. (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist, 197, 19-35.
Corrêa-Scalon M., Maia Chaves Bicalho Domingos F., Jonatar Alves da Cruz W., Marimon Júnior B.H., Schwantes Marimon B., Oliveras I. (2020) Diversity of functional trade-offs enhances survival after fire in neotropical savanna species. Journal of Vegetation Science, 31, 139-150.
Costa I.S.C., Lucena E.M.P., Bonilla O.H., Guesdon I.R., Coutinho Í.A.C. (2020) Seasonal variation in colleter exudates in Myrcia splendens (Myrtaceae). Australian Journal of Botany, 68, 403.
da Silva C.J., Barbosa L.C.A., Marques A.E., Baracat-Pereira M.C., Pinheiro A.L., Meira R.M.S.A. (2012) Anatomical characterization of the foliar colleters in Myrtoideae (Myrtaceae). Australian Journal of Botany, 60, 707.
de Antonio A.C., Hoffmann W.A., Rossatto D.R. (2021) The role of morpho-physiological traits in frost tolerance of neotropical savanna trees. Trees, 35, 1687-1696.
de Antonio A.C., Scalon M.C., Rossatto D.R. (2020) The role of bud protection and bark density in frost resistance of savanna trees. Plant Biology, 22, 55-61.
de Campos B.H., Guimarães E., Canaveze Y., Machado S.R. (2021) Epicormic bud protection traits vary along a latitudinal gradient in a neotropical savanna. Naturwissenschaften, 108, 11.
de Carvalho Barbosa B., Siqueira Cappi V., Pontes Ribeiro S., Wilson Fernandes G. (2014) Avaliação da capacidade de rebrotamento pós distúrbio das plantas lenhosas típicas dos campos rupestres. Ecología Austral, 24, 350-355.
Durigan G., Pilon N.A.L., Assis G.B., Souza F.M., Baitello J.B. (2018) Plantas pequenas do cerrado: biodiversidade negligenciada, Governo do Estado de São Paulo, Secretaria do Meio Ambiente. Instituto Florestal, São Paulo, Brazil: 720 pp.
Fernandez-Marín B., Hernández A., Garcia-Plazaola J.I., Esteban R., Miguez F., Artetxe U., Gómez-Sagasti M.T. (2017) Photoprotective strategies of Mediterranean plants in relation to morphological traits and natural environment pressure: a meta-analytical approach. Frontiers in Plant Sciences, 8, 1-16.
Ferraro A., da Silva G.S., de Aguiar C.L., Appezzato-da-Glória B. (2021) Evaluating belowground bud banks of native species from Cerrado: structural, chemical, and ecological approaches. Flora, 281, 151852.
Franco A.C., Rossatto D.R., de Carvalho Ramos Silva L., da Silva Ferreira C. (2014) Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theoretical and Experimental Plant Physiology, 26, 19-38.
Gregory M., Baas P. (1989) A survey of mucilage cells in vegetative organs of the dicotyledons. Israel Journal of Botany, 38, 125-174.
Horridge G.A., Tamm S.L. (1969) Critical point drying for scanning electron microscopic study of ciliary motion. Science, 163, 817-818.
Hudgins J.W., Krekling T., Franceschi V.R. (2003) Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytologist, 159, 677-690.
Jensen W.A. (1962) Botanical histochemistry: principles and practice. W. H. Freeman, San Francisco, CA, USA: 408 pp.
Johansen D.A. (1940) Plant Microtechnique. McGraw-Hill, London, UK: 523 pp.
Karabourniotis G., Horner H.T., Bresta P., Nikolopoulos D., Liakopoulos G. (2020) New insights into the functions of carbon-calcium inclusions in plants. New Phytologist, 228, 845-854.
Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure-function coordination. Journal of Forestry Research, 31, 1-12.
Karnovsky M.J. (1965) A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27, 1A-149A.
Lev-Yadun S. (2007) Defensive functions of white coloration in coastal and dune plants. Israel Journal of Plant Sciences, 54, 317-325.
McManus J.F.A. (1948) Histological and histochemical uses of periodic acid. Stain Technology, 23, 99-108.
Mercadante-Simões M.O., Paiva E.A.S. (2013) Leaf colleters in Tontelea micrantha (Celastraceae, Salacioideae): ecological, morphological and structural aspects. Comptes Rendus Biologies, 336, 400-406.
Moles A.T., Laffan S.W., Keighery M., Dalrymple R.L., Tindall M.L., Chen S. (2020) A hairy situation: plant species in warm, sunny places are more likely to have pubescent leaves. Journal of Biogeography, 47, 1934-1944.
Moreira B., Tormo J., Pausas J.G. (2012) To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos, 121, 1577-1584.
Nakata P.A. (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science, 164, 901-909.
Ottaviani G., Molina-Venegas R., Charles-Dominique T., Chelli S., Campetella G., Canullo R., Klimešova J. (2020) The neglected belowground dimension of plant dominance. Trends in Ecology & Evolution, 35, 763-766.
Paiva E.A.S. (2019) Are calcium oxalate crystals a dynamic calcium store in plants? New Phytologist, 223, 1707-1711.
Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B., Fidelis A. (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist, 217, 1435-1448.
Pearse A.G.E. (1968) Histochemistry: theoretical and applied. J. & A. Churchill, London, UK: 456 pp.
Pilon N.A.L. (2019) Efeitos de distúrbios naturais e da supressão do fogo na diversidade e estrutura do estrato herbáceo-arbustivo do Cerrado. Thesis, University of Campinas, São Paulo State, Brazil: 170 pp.
Pilon N.A.L., Cava M.G., Hoffmann W.A., Abreu R.C., Fidelis A., Durigan G. (2021) The diversity of post-fire regeneration strategies in the cerrado ground layer. Journal of Ecology, 109, 154-166.
Rasband W.S. (2006) Image J. National Institute of Health, Bethesda, USA.
Reynolds E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology, 17, 208-212.
Ribeiro J.C., Ferreira M.J.P., Demarco D. (2017) Colleters in Asclepiadoideae (Apocynaceae): protection of meristems against desiccation and new functions assigned. International Journal of Plant Sciences, 178, 465-477.
Sakai W.S. (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technology, 48, 247-249.
Schoonderwoerd K.M., Friedman W.E. (2021) Naked resting bud morphologies and their taxonomic and geographic distributions in temperate, woody floras. New Phytologist, 232, 523-536.
Silva G.S., Ferraro A., de Aguiar C.L., Appezzato-Da-Glória B. (2021) Resprouting strategies of three native shrub Cerrado species from a morphoanatomical and chemical perspective. Australian Journal of Botany, 69, 527-542.
Silva G.S., Ferraro A., Ogando F.I.B., de Aguiar C.L., Appezzato-Da-Glória B. (2020) Structures related to resprouting potential of two Myrtaceae species from Cerrado: morpho-anatomical and chemical studies. Anais da Academia Brasileira de Ciências, 92, 1-18.
Silva M.d.S., Coutinho Í.A.C., Araújo M.N., Meira R.M.S.A. (2017) Colleters in Chamaecrista (L.) Moench sect. Chamaecrista and sect. Caliciopsis (Leguminosae-Caesalpinioideae): anatomy and taxonomic implications. Acta Botanica Brasilica, 31, 382-391.
Simon M.F., Grether R., de Queiroz L.P., Skema C., Pennington R.T., Hughes C.E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences of the United States of America, 106, 20359-20364.
Sobral, M., Proença, C., Souza, M., Mazine, F., Lucas, E. (2015) Myrtaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil2015.jbrj.gov.br/jabot/floradobrasil/FB31513.
Soliman S., Mohammad M.G., El-Keblawy A.A., Omar H., Abouleish M., Madkour M., Elnaggar A., Hosni R.M. (2018) Mechanical and phytochemical protection mechanisms of Calligonum comosum in arid deserts. PLOS ONE, 13, 1-15.
Tian D., Tooker J., Peiffer M., Chung S.H., Felton G.W. (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236, 1053-1066.
Tozin L.R.S., de Melo Silva S.C., Rodrigues T.M. (2016) Non-glandular trichomes in Lamiaceae and Verbenaceae species: morphological and histochemical features indicate more than physical protection. New Zealand Journal of Botany, 54, 446-457.
Vidal B.C. (1970) Dichroism in collagen bundles stained with xylidine ponceau 2R. Annales d'Histochimie, 15, 289-296.
Wang X., Shen C., Meng P., Tan G., Lv L. (2021) Analysis and review of trichomes in plants. BMC Plant Biology, 21, 1-11.