Photoelectrochemical degradation of selected organic substances on Fe2O3 photoanodes: a comparison with TiO2
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-11635S
Grantová Agentura České Republiky
PubMed
36318401
DOI
10.1007/s43630-022-00324-x
PII: 10.1007/s43630-022-00324-x
Knihovny.cz E-zdroje
- Klíčová slova
- Hematite, Organic substances, Photoelectrochemical oxidation, Spray pyrolysis,
- Publikační typ
- časopisecké články MeSH
The photoelectrochemical degradation of selected aromatic substances, acid orange 7 (AO7), salicylic acid (SA), benzoic acid (BA), and 4-chlorophenol (4-CP) was studied on hematite (α-Fe2O3) and compared with titanium dioxide (TiO2), both deposited as thin films on conducting substrates (FTO/glass). Batch type reactors were used under backside and front side illumination. Electrical bias was applied on the semiconducting electrodes, such that only valence band processes leading to oxidative pathways were followed. The initial Faradaic efficiency, f0, of degradation processes was determined from the UV-Vis absorbance decrease of the starting materials. f0 for 1 mM AO7 degradation in 0.01 M sulphuric acid was found to be 7.5%. When the pH of the solution was neutral (pH 7.2) or alkaline (pH 13), f0 decreased to 1.7%. For 1 mM SA, f0 was 6.2% on hematite photoanodes and 6.1% on titanium dioxide. For 1 mM benzoic acid and 4-chlorophenol, f0 was an order of magnitude lower, but only on hematite. This is ascribed to the lack of OH· radical formation on hematite, which seems to be essential for the photooxidation of these compounds.
Zobrazit více v PubMed
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO PubMed DOI
Kennedy, J. H., & Frese, K. W. (1978). Photooxidation of water at α-Fe DOI
Pourbaix, M. (1963). Atlas d’Équilibres Électrochimiques (p. 307). Gauthier-Villars et Cie.
Kennedy, J. H., & Anderman, M. (1983). Photoelectrolysis of water at α-Fe DOI
Steier, L., Herraiz-Cardona, I., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., Tilley, S. D., & Grätzel, M. (2014). Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Advanced Functional Materials, 24(48), 7681–7688. https://doi.org/10.1002/adfm.201402742 DOI
Kment, Š, Riboni, F., Paušová, Š, Wang, L., Wang, L., Han, H., Hubička, Z., Krýsa, J., Schmuki, P., & Zboril, R. (2017). Photoanodes based on TiO PubMed DOI
Neumann-Spallart, M., Shinde, S. S., Mahadik, M., & Bhosale, C. H. (2013). Photoelectrochemical degradation of selected aromatic molecules. Electrochimica Acta, 111, 830–836. DOI
Mahadik, M. A., Shinde, S. S., Kumbhar, S. S., Pathan, H. M., Rajpure, K. Y., & Bhosale, C. H. (2015). Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium. Journal of Photochemistry and Photobiology B: Biology, 142, 43–50. PubMed DOI
Shinde, S. S., Bhosale, C. H., & Rajpure, K. Y. (2011). Photocatalytic oxidation of salicylic acid and 4-chlorophenol in aqueous solutions mediated by modified AlFe DOI
Chen, S., Li, J., Bai, J., Xia, L., Zhang, Y., Li, L., Xu, Q., & Zhou, B. (2018). Electron blocking and hole extraction by a dual-function layer for hematite with enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 237, 175–184. DOI
Mahadik, M. A., Shinde, S. S., Mohite, V. S., Kumbhar, S. S., Moholkar, A. V., Rajpure, K. Y., Ganesan, V., Nayak, J., Barman, S. R., & Bhosale, C. H. (2014). Visible light catalysis of rhodamine B using nanostructured Fe PubMed DOI
Mahadik, M. A., Shinde, S. S., Rajpure, K. Y., & Bhosale, C. H. (2013). Photocatalytic oxidation of rhodamine B with ferric oxide thin films under solar illumination. Materials Research Bulletin, 48(10), 4058–4065. DOI
Krýsa, J., Baudys, M., Zlámal, M., Krýsová, H., Morozová, M., & Klusoň, P. (2014). Photocatalytic and photoelectrochemical properties of sol–gel TiO DOI
Imrich, T., Krýsová, H., Neumann-Spallart, M., & Krýsa, J. (2021). Fe DOI
Krýsa, J., Imrich, T., Paušová, Š, Krýsová, H., & Neumann-Spallart, M. (2019). Hematite films by aerosol pyrolysis: Influence of substrate and photocorrosion suppression by TiO DOI
Hirano, K., & Bard, A. J. (1980). Semiconductor electrodes: XXVIII. Rotating ring-disk electrode studies of photo-oxidation of acetate and iodide at n-TiO DOI
Bourikas, K., Stylidi, M., Kondarides, D. I., & Verykios, X. E. (2005). Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir, 21(20), 9222–9230. PubMed DOI
Guinea, E., Arias, C., Cabot, P. L., Garrido, J. A., Rodríguez, R. M., Centellas, F., & Brillas, E. (2008). Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Research, 42(1), 499–511. PubMed DOI
Momeni, S., & Nematollahi, D. (2017). New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives. Scientific Reports, 7(1), 41963. PubMed DOI PMC
Arts, A., van den Berg, K. P., de Groot, M. T., & van der Schaaf, J. (2021). Electrochemical oxidation of benzoic acid and its aromatic intermediates on boron doped diamond electrodes. Current Research in Green and Sustainable Chemistry, 4, 100217. DOI
Colucci, J., Montalvo, V., Hernandez, R., & Poullet, C. (1999). Electrochemical oxidation potential of photocatalyst reducing agents. Electrochimica Acta, 44(15), 2507–2514. DOI
Rodrigo, M. A., Michaud, P. A., Duo, I., Panizza, M., Cerisola, G., & Comninellis, C. (2001). Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. Journal of the Electrochemical Society, 148(5), D60. DOI
Armstrong, D. A., Huie, R. E., Lymar, S., Koppenol, W. H., Merényi, G., Neta, P., Stanbury, D. M., Steenken, S., & Wardman, P. (2013). Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals. BioInorganic Reaction Mechanisms, 9(1–4), 59–61.
Atkinson, R. J., Posner, A. M., & Quirk, J. P. (1967). Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. The Journal of Physical Chemistry, 71(3), 550–558. DOI
Kosmulski, M. (2020). The pH dependent surface charging and points of zero charge. VIII. Update. Advances in Colloid and Interface Science, 275, 102064. PubMed DOI
Xu, Y., & Schoonen, M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3–4), 543–556. DOI