• This record comes from PubMed

Binding of the peptide deformylase on the ribosome surface modulates the exit tunnel interior

. 2022 Dec 06 ; 121 (23) : 4443-4451. [epub] 20221105

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 36335428
PubMed Central PMC9748369
DOI 10.1016/j.bpj.2022.11.004
PII: S0006-3495(22)00902-X
Knihovny.cz E-resources

Proteosynthesis on ribosomes is regulated at many levels. Conformational changes of the ribosome, possibly induced by external factors, may transfer over large distances and contribute to the regulation. The molecular principles of this long-distance allostery within the ribosome remain poorly understood. Here, we use structural analysis and atomistic molecular dynamics simulations to investigate peptide deformylase (PDF), an enzyme that binds to the ribosome surface near the ribosomal protein uL22 during translation and chemically modifies the emerging nascent peptide. Our simulations of the entire ribosome-PDF complex reveal that the PDF undergoes a swaying motion on the ribosome surface at the submicrosecond timescale. We show that the PDF affects the conformational dynamics of parts of the ribosome over distances of more than 5 nm. Using a supervised-learning algorithm, we demonstrate that the exit tunnel is influenced by the presence or absence of PDF. Our findings suggest a possible effect of the PDF on the nascent peptide translocation through the ribosome exit tunnel.

See more in PubMed

Kudva R., Tian P., et al. von Heijne G. The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. Elife. 2018;7 PubMed PMC

Berisio R., Schluenzen F., et al. Yonath A. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Mol. Biol. 2003;10:366–370. PubMed

Seidelt B., Innis C.A., et al. Beckmann R. Structural insight into nascent polypeptide chain–mediated translational stalling. Science. 2009;326:1412–1415. PubMed PMC

Bischoff L., Berninghausen O., Beckmann R. Molecular basis for the ribosome functioning as an L-tryptophan sensor. Cell Rep. 2014;9:469–475. PubMed

van der Stel A.-X., Gordon E.R., et al. Innis C.A. Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling. bioRxiv. 2021 doi: 10.1101/2022.05.23.493104. 2021.03.31.437805. PubMed DOI PMC

Arenz S., Bock L.V., et al. Wilson D.N. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat. Commun. 2016;7:12026. PubMed PMC

Beckert B., Leroy E.C., et al. Wilson D.N. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat. Commun. 2021;12:4466. PubMed PMC

Su T., Cheng J., et al. Beckmann R. The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling. Elife. 2017;6 PubMed PMC

Nilsson O.B., Hedman R., et al. von Heijne G. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 2015;12:1533–1540. PubMed PMC

Gumbart J., Schreiner E., et al. Schulten K. Mechanisms of SecM-mediated stalling in the ribosome. Biophys. J. 2012;103:331–341. PubMed PMC

Makarova T.M., Bogdanov A.A. The ribosome as an allosterically regulated molecular machine. Biochem. Mosc. 2017;82:1557–1571. PubMed

Kolář M.H., Nagy G., et al. Grubmüller H. Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel. Nucleic Acids Res. 2022;50:2258–2269. PubMed PMC

Guzel P., Yildirim H.Z., et al. Kurkcuoglu O. Exploring allosteric signaling in the exit tunnel of the bacterial ribosome by molecular dynamics simulations and residue network model. Front. Mol. Biosci. 2020;7 doi: 10.3389/fmolb.2020.586075. PubMed DOI PMC

Kramer G., Boehringer D., et al. Bukau B. The ribosome as a platform for Co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 2009;16:589–597. PubMed

Bornemann T., Jöckel J., et al. Wintermeyer W. Signal sequence–independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 2008;15:494–499. PubMed

Nakatogawa H., Ito K. The ribosomal exit tunnel functions as a discriminating gate. Cell. 2002;108:629–636. PubMed

Lu J., Deutsch C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 2005;12:1123–1129. PubMed

Giglione C., Fieulaine S., Meinnel T. N-terminal protein modifications: bringing back into play the ribosome. Biochimie. 2015;114:134–146. PubMed

Giglione C., Pierre M., Meinnel T. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol. Microbiol. 2000;36:1197–1205. PubMed

Lee M.D., She Y., et al. Scheinberg D.A. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J. Clin. Investig. 2004;114:1107–1116. PubMed PMC

Bingel-Erlenmeyer R., Kohler R., et al. Ban N. A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing. Nature. 2008;452:108–111. PubMed

Bhakta S., Akbar S., Sengupta J. Cryo-EM structures reveal relocalization of MetAP in the presence of other protein biogenesis factors at the ribosomal tunnel exit. J. Mol. Biol. 2019;431:1426–1439. PubMed

Bock L.V., Kolář M.H., Grubmüller H. Molecular simulations of the ribosome and associated translation factors. Curr. Opin. Struc. Biol. 2018;49:27–35. PubMed

Fischer N., Neumann P., et al. Stark H. Structure of the E. Coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature. 2015;520:567–570. PubMed

Smith K.J., Petit C.M., et al. Christensen S.B. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Protein Sci. 2003;12:349–360. PubMed PMC

Maier J.A., Martinez C., et al. Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. PubMed PMC

Cornell W.D., Cieplak P., et al. Kollman P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995;117:5179–5197.

Pérez A., Marchán I., et al. Orozco M. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC

Zgarbová M., Otyepka M., et al. Jurečka P. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011;7:2886–2902. PubMed PMC

Aduri R., Psciuk B.T., et al. SantaLucia J. AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J. Chem. Theory Comput. 2007;3:1464–1475. PubMed

Berendsen H.J.C., Postma J.P.M., et al. Hermans J. In: Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981. Pullman B., editor. Springer Netherlands; 1981. Interaction models for water in relation to protein hydration; pp. 331–342. The Jerusalem Symposia on Quantum Chemistry and Biochemistry.

Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC

Huter P., Arenz S., et al. Wilson D.N. Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell. 2017;68:515–527.e6. PubMed

Warias M., Grubmüller H., Bock L.V. tRNA dissociation from EF-Tu after GTP hydrolysis: primary steps and antibiotic inhibition. Biophys. J. 2020;118:151–161. PubMed PMC

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126 PubMed

Berendsen H.J.C., Postma J.P.M., et al. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690.

Parrinello M., Rahman A. Polymorphic Transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.

Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008;4:116–122. PubMed

Feenstra K.A., Hess B., Berendsen H.J.C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999;20:786–798. PubMed

Hess B., Kutzner C., et al. Lindahl E. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. PubMed

Darden T., York D., Pedersen L. Particle mesh Ewald: an n·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.

Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Amadei A., Linssen A.B.M., Berendsen H.J.C. Essential dynamics of proteins. Proteins. 1993;17:412–425. PubMed

Hub J.S., de Groot B.L. Detection of functional modes in protein dynamics. PLoS Comp. Biol. 2009;5 PubMed PMC

Gowers R.J., Linke M., et al. Beckstein O. Proceedings of the 15th Python in Science Conference. 2016. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations; pp. 98–105.

Michaud-Agrawal N., Denning E.J., et al. Beckstein O. MDAnalysis: a Toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. PubMed PMC

Guzman-Luna V., Fuchs A.M., et al. Cavagnero S. An intrinsically disordered nascent protein interacts with specific regions of the ribosomal surface near the exit tunnel. Communications Biology. 2021;4:1–17. PubMed PMC

Cassaignau A.M.E., Włodarski T., et al. Christodoulou J. Interactions between nascent proteins and the ribosome surface inhibit Co-translational folding. Nat. Chem. 2021;13:1214–1220. PubMed PMC

Bögeholz L.A.K., Mercier E., et al. Rodnina M.V. Kinetic control of nascent protein biogenesis by peptide deformylase. Sci. Rep. 2021;11 PubMed PMC

Bornemann T., Holtkamp W., Wintermeyer W. Interplay between trigger factor and other protein biogenesis factors on the ribosome. Nat. Commun. 2014;5:4180. PubMed

Walker A.S., Russ W.P., et al. Schepartz A. RNA sectors and allosteric function within the ribosome. Proc. Natl. Acad. Sci. USA. 2020;117:19879–19887. PubMed PMC

Sandikci A., Gloge F., et al. Kramer G. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat. Struct. Mol. Biol. 2013;20:843–850. PubMed

Lu J., Deutsch C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 2008;384:73–86. PubMed PMC

Goldman D.H., Kaiser C.M., et al. Bustamante C. Mechanical force releases nascent chain–mediated ribosome arrest in vitro and in vivo. Science. 2015;348:457–460. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...