Microwave Catheter Navigation System for the Radiofrequency Liver Ablation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-00579S
Czech Science Foundation
SGS20/203/OHK4/3T/17
CTU students grant
PubMed
36358714
PubMed Central
PMC9656965
DOI
10.3390/cancers14215296
PII: cancers14215296
Knihovny.cz E-zdroje
- Klíčová slova
- UWB radar, catheter position determination, delay-and-sum, hepatocellular carcinoma, medical imaging, microwave imaging, radiofrequency ablation,
- Publikační typ
- časopisecké články MeSH
Thermal ablation is a well-known method used in interventional radiology to treat cancer. The treatment success is closely related to the exact catheter location in the treated area. Current navigation methods are based mostly on ultrasound or computed tomography. This work explores the possibility of tracking the catheter position during ablation treatment of hepatocellular carcinomas (HCC) using an ultra-wideband (UWB) antenna array and microwave radar imaging based on the "Delay and Sum" (DAS) algorithm. The feasibility was first numerically studied on a simple homogeneous liver model. A heterogeneous anthropomorphic 3D model of the treated region consisting of the main organs within the treated area was then used. Various standard radiofrequency ablation (RFA) catheters were placed virtually in the heterogeneous model. The location and orientation of the antenna elements of the developed imaging system and the applied frequency band were studied. Subsequently, an experimental setup consisting of a 3D printed homogeneous anthropomorphic model, eight UWB dipole antennas, and catheters was created and used in a series of measurements. The average accuracy determining the catheter position from simulated and experimental data was 3.88 ± 0.19 and 6.13 ± 0.66 mm, which are close to the accuracy of clinical navigation systems.
Zobrazit více v PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590. PubMed DOI
Jemal A., Ward E., Thun M., Miranda J.J. Declining Death Rates Reflect Progress against Cancer. PLoS ONE. 2010;5:e9584. doi: 10.1371/journal.pone.0009584. PubMed DOI PMC
Stauffer P.R., Goldberg S.N. Introduction: Thermal ablation therapy. Int. J. Hyperth. 2009;20:671–677. doi: 10.1080/02656730400007220. PubMed DOI
Kok H.P., Cressman E.N.K., Ceelen W., Brace C.L., Ivkov R., Grüll H., ter Haar G., Wust P., Crezee J. Heating technology for malignant tumors: A review. Int. J. Hyperth. 2020;37:711–741. doi: 10.1080/02656736.2020.1779357. PubMed DOI PMC
Tammam E., Said A.M., Ibrahim A.A., Galal A.I.A. About the Interstitial Microwave Cancer Ablation: Principles, Advantages and Challenges. IEEE Access. 2020;8:49685–49694. doi: 10.1109/ACCESS.2020.2978210. DOI
Cho Y.K., Rhim H., Noh S. Radiofrequency Ablation versus Surgical Resection as Primary Treatment of Hepatocellular Carcinoma Meeting the Milan Criteria: A Systematic Review. J. Gastroenterol. Hepatol. 2011;26:1354–1360. doi: 10.1111/j.1440-1746.2011.06812.x. PubMed DOI
Simon C.J., Dupuy D.E., Mayo-Smith W.W. Microwave Ablation: Principles and Applications. RadioGraphics. 2005;25((Suppl. S1)):S69–S83. doi: 10.1148/rg.25si055501. PubMed DOI
Brace C.L. Microwave Ablation Technology: What Every User Should Know. Curr. Probl. Diagn. Radiol. 2009;38:61–67. doi: 10.1067/j.cpradiol.2007.08.011. PubMed DOI PMC
Sjølie E., Langø T., Ystgaard B., Tangen G.A., Nagelhus Hernes T.A., Mørvik R. 3D ultrasound-based navigation for radiofrequency thermal ablation in the treatment of liver malignancies. Surg. Endosc. 2003;17:933–938. doi: 10.1007/s00464-002-9116-z. PubMed DOI
Takayasu K., Muramatsu Y., Asai S., Muramatsu Y., Kobayashi T. CT fluoroscopy-assisted needle puncture and ethanol injection for hepatocellular carcinoma: A preliminary study. Am. J. Roentgenol. 1999;173:1219–1224. doi: 10.2214/ajr.173.5.10541092. PubMed DOI
Abi-Jaoudeh N., Kruecker J., Kadoury S., Kobeiter H., Venkatesan A.M., Levy E., Wood B.J. Multimodality Image Fusion–Guided Procedures: Technique, Accuracy, and Applications. Cardiovasc. Interv. Radiol. 2012;35:986–998. doi: 10.1007/s00270-012-0446-5. PubMed DOI PMC
Wood B.J., Kruecker J., Abi-Jaoudeh N., Locklin J.K., Levy E., Xu S., Solbiati L., Kapoor A., Amalou H., Venkatesan A.M. Navigation Systems for Ablation. J. Vasc. Interv. Radiol. 2010;21:257–263. doi: 10.1016/j.jvir.2010.05.003. PubMed DOI PMC
Kim Y.J., Lee M.W., Park H.S. Small hepatocellular carcinomas: Ultrasonography guided percutaneous radiofrequency ablation. Abdom. Imaging. 2013;38:98–111. doi: 10.1007/s00261-012-9883-5. PubMed DOI
Lee M.W. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography. 2014;33:227–239. doi: 10.14366/usg.14021. PubMed DOI PMC
Maybody M., Stevenson C., Solomon S.B. Overview of Navigation Systems in Image-Guided Interventions. Tech. Vasc. Interv. Radiol. 2013;16:136–143. doi: 10.1053/j.tvir.2013.02.008. PubMed DOI
Sánchez Y., Anvari A., Samir A.E., Arellano R.S., Prabhakar A.M., Uppot R.N. Navigational Guidance and Ablation Planning Tools for Interventional Radiology. Curr. Probl. Diagn. Radiol. 2017;46:225–233. doi: 10.1067/j.cpradiol.2016.11.002. PubMed DOI
Nawfel R.D., Judy P.F., Silverman S.G., Hooton S., Tuncali K., Adams D.F. Patient and Personnel Exposure during CT Fluoroscopy-guided Interventional Procedures. Radiology. 2000;216:180–184. doi: 10.1148/radiology.216.1.r00jl39180. PubMed DOI
Kloeckner R., dos Santos D.P., Schneider J., Kara L., Dueber C., Pitton M.B. Radiation exposure in CT-guided interventions. Eur. J. Radiol. 2013;82:2253–2257. doi: 10.1016/j.ejrad.2013.08.035. PubMed DOI
Fiser O., Helbig M., Sachs J., Ley S., Merunka I., Vrba J. Microwave Non-Invasive Temperature Monitoring Using UWB Radar for Cancer Treatment by Hyperthermia. Prog. Electromagn. Res. 2018;162:1–14. doi: 10.2528/PIER17111609. DOI
Skolnik M.I. Radar Handbook. 2nd ed. McGraw-Hill; New York, NY, USA: 1990.
Scapaticci R., Lopresto V., Pinto R., Cavagnaro M., Crocco L. Monitoring Thermal Ablation via Microwave Tomography: An Ex Vivo Experimental Assessment. Diagnostics. 2018;8:81. doi: 10.3390/diagnostics8040081. PubMed DOI PMC
Bucci O.M., Cavagnaro M., Crocco L., Lopresto V., Scapaticci R. Microwave ablation monitoring via microwave tomography: A numerical feasibility assessment; Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP); Davos, Switzerland. 10–15 April 2016; DOI
Wang M., Crocco L., Costanzo S., Scapaticci R., Cavagnaro M. A Compact Slot-Loaded Antipodal Vivaldi Antenna for a Microwave Imaging System to Monitor Liver Microwave Thermal Ablation. IEEE Open J. Antennas Propag. 2022;3:700–708. doi: 10.1109/OJAP.2022.3183750. DOI
Helbig M., Dahlke K., Hilger I., Kmec M., Sachs J. UWB microwave imaging of heterogeneous breast phantoms. Biomed. Eng. Biomed. Tech. 2012;57:486–489. doi: 10.1515/bmt-2012-4237. DOI
Kwon S., Lee S. Recent Advances in Microwave Imaging for Breast Cancer Detection. Int. J. Biomed. Imaging. 2016;2016:1–26. doi: 10.1155/2016/5054912. PubMed DOI PMC
Wörtge D., Moll J., Krozer V., Bazrafshan B., Hübner B., Park C., Vogl T. Comparison of X-ray-Mammography and Planar UWB Microwave Imaging of the Breast: First Results from a Patient Study. Diagnostics. 2018;8:54. doi: 10.3390/diagnostics8030054. PubMed DOI PMC
Ley S., Sachs J., Faenger B., Hilger I., Helbig M. MNP-Enhanced Microwave Medical Imaging by Means of Pseudo-Noise Sensing. Sensors. 2021;21:6613. doi: 10.3390/s21196613. PubMed DOI PMC
Shin H.J., Narayanan R.M., Asmuth M.A., Rangaswamy M. Ultrawideband Noise Radar Tomography: Principles, Simulation, and Experimental Validation. Int. J. Microw. Sci. Technol. 2016;2016:21p. doi: 10.1155/2016/5787895. DOI
Scapaticci R., Di Donato L., Catapano I., Crocco L. A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring. Prog. Electromagn. Res. B. 2012;40:305–324. doi: 10.2528/PIERB12022006. DOI
Merunka I., Massa A., Vrba D., Fiser O., Salucci M., Vrba J. Microwave Tomography System for Methodical Testing of Human Brain Stroke Detection Approaches. Int. J. Antennas Propag. 2019;2019:1–9. doi: 10.1155/2019/4074862. DOI
Conceição R.C., Mohr J.J., O’Halloran M. An Introduction to Microwave Imaging for Breast Cancer Detection. 1st ed. Springer International Publishing; Cham, Switzerland: 2016.
Fiser O., Hruby V., Merunka I., Vrba J. Numerical Study of Stroke Detection Using UWB Radar; Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama); Toyama, Japan. 1–4 August 2018; pp. 160–163. DOI
ROGERS CORPORATION RO4000® Series High Frequency Circuit Materials. 2018. [(accessed on 15 June 2022)]. USA. Available online: https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/ro4000-laminates-ro4003c-and-ro4350b---data-sheet.pdf.
Hasgall P.A., Di Gennaro F., Baumgartner C., Neufield E., Lloyd B., Gosselin M.C., Payne D., Klingenböck A., Kuster N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. IT’IS Foundation; Zurich, Switzerland: 2022. [(accessed on 5 June 2022)]. Version 4.0. Available online: DOI
IT’IS Foundation . IT’IS Foundation. IT’IS Foundation; Zurich, Switzerland: 2022. Duke cV3.1. DOI
Karabulut K., Aucejo F., Akyildiz H.Y., Siperstein A., Berber E. Resection and radiofrequency ablation in the treatment of hepatocellular carcinoma: A single-center experience. Surg. Endosc. 2012;26:990–997. doi: 10.1007/s00464-011-1983-8. PubMed DOI
Berber E., Herceg N.L., Casto K.J., Siperstein A. Laparoscopic radiofrequency ablation of hepatic tumors: Prospective clinical evaluation of ablation size comparing two treatment algorithms. Surg. Endosc. 2004;18:390–396. doi: 10.1007/s00464-003-8911-5. PubMed DOI
AngioDynamics StarBurst MRI: Tech Sheet. 2013. [(accessed on 11 May 2022)]. Available online: https://www.angiodynamics.com/wp-content/uploads/2020/10/StarBurst_MRI_Tech_Sheet-071945.pdf.
Fiser O., Hruby V., Vrba J., Drizdal T., Tesarik J., Vrba J., Vrba D. UWB Bowtie Antenna for Medical Microwave Imaging Applications. IEEE Trans. Antennas Propag. 2022;70:1. doi: 10.1109/TAP.2022.3161355. DOI
Zhang R., Wu S., Wu W., Gao H., Zhou Z. Computer-assisted needle trajectory planning and mathematical modeling for liver tumor thermal ablation: A review. Math. Biosci. Eng. 2019;16:4846–4872. doi: 10.3934/mbe.2019244. PubMed DOI