Computational Fluid Dynamics Could Enable Individualized Surgical Treatment of Nasal Obstruction (A Preliminary Study)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Conceptual Development of Research Organization, RVO- FNOs/2022
Ministry of Health
PubMed
36359486
PubMed Central
PMC9689633
DOI
10.3390/diagnostics12112642
PII: diagnostics12112642
Knihovny.cz E-zdroje
- Klíčová slova
- 3D model, computational fluid dynamics, nasal airflow, nasal surgery, planning,
- Publikační typ
- časopisecké články MeSH
Passage of nasal airflow during breathing is crucial in achieving accurate diagnosis and optimal therapy for patients with nasal disorders. Computational fluid dynamics (CFD) is the dominant method for simulating and studying airflow. The present study aimed to create a CFD nasal airflow model to determine the major routes of airflow through the nasal cavity and thus help with individualization of surgical treatment of nasal disorders. The three-dimensional nasal cavity model was based on computed tomography scans of the nasal cavity of an adult patient without nasal breathing problems. The model showed the main routes of airflow in the inferior meatus and inferior part of the common meatus, but also surprisingly in the middle meatus and in the middle part of the common nasal meatus. It indicates that the lower meatus and the lower part of the common meatus should not be the only consideration in case of surgery for nasal obstruction in our patient. CFD surgical planning could enable individualized precise surgical treatment of nasal disorders. It could be beneficial mainly in challenging cases such as patients with persistent nasal obstruction after surgery, patients with empty nose syndrome, and patients with a significant discrepancy between the clinical findings and subjective complaints.
Zobrazit více v PubMed
Chometon F., Ebbo D., Gillieron P., Koifman P., Lecomte F., Sorrel-Dejerine N. A numerical simulation of the aerodynamics of the nasal cavity. Ann. Otolaryngol. Chir. Fac. 2000;117:98–104. PubMed
Grützenmacher S., Lang G., Mlynski G. Flow simulation, rhinoresistometry and acoustic rhinometry in nasal models before and after turbinate surgery. ORL. 2003;65:341–347. doi: 10.1159/000076052. PubMed DOI
Liu T., Han D., Wang J., Tan J., Zang H., Wang T., Li Y., Cui S. Effects of septal deviation on the airflow characteristics: Using computational fluid dynamics models. Acta Oto-Laryngol. 2012;132:290–298. doi: 10.3109/00016489.2011.637233. PubMed DOI
Önerci T., Shimzu T., Mlynski R. Nasal Physiology and Pathophysiology of Nasal Disorders. Volume 280–300. Springer; Berlin/Heidelberg, Germany: 2013. pp. 323–356.
Keyhani K., Scherrer P., Mozzel M. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 1995;117:429–441. doi: 10.1115/1.2794204. PubMed DOI
Leite S., Jain R., Douglas R. The clinical implications of computerised fluid dynamics modelling in rhinology. Rhinology. 2018;56:2–9. doi: 10.4193/Rhin18.035. PubMed DOI
Plášek M., Bojko M., Masárová M., Matoušek P., Komínek P. The physiology and pathophysiology of the nasal airflow. Otorinolaryng A Foniat. 2018;67:113–118.
Lee H.P., Poh H.J., Chong F.H., Wang D.Y. Changes of airflow pattern in inferior turbinate hypertrophy: A computational fluid dynamic model. Am. J. Rhinol. Allergy. 2009;23:153–158. doi: 10.2500/ajra.2009.23.3287. PubMed DOI
Lee T.S., Goyal P., Li C., Zhao K. Computational fluid dynamics to evaluate the effectiveness of inferior turbinate reduction techniques to improve nasal airflow. JAMA Facial Plast. Surg. 2018;20:263–270. doi: 10.1001/jamafacial.2017.2296. PubMed DOI PMC
Bojko M., Kozdera M., Kozubkova M. Investigation of viscous fluid flow in an eccentrically deposited annulus using CFD methods. EPJ Web Conf. 2013;45:01115. doi: 10.1051/epjconf/20134501115. DOI
Bojko M., Kocich R. CFD analysis of the plate heat exchanger—Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger. AIP Conf. Proc. 2016;1745:020002.
Simmen D., Scherrer J.L., Moe K., Heinz B. A dynamic and direct visualization model for the study of nasal airflow. Arch. Otolaryngol. Head Neck Surg. 1999;125:1015–1021. doi: 10.1001/archotol.125.9.1015. PubMed DOI
Mlynski G., Grützenmacher S., Plontke S. A method for studying nasal airflow by means of fluid dynamics experiments. Z. Med. Phys. 2000;10:207–214. doi: 10.1016/S0939-3889(15)70307-7. DOI
Zhao K., Jiang J. What is normal nasal airflow. A computational study of 22 healthy adults. Int. Forum Allergy Rhinol. 2014;4:435–446. doi: 10.1002/alr.21319. PubMed DOI PMC
Zhao K., Dalton P. The way the wind blows: Implications of modeling nasal airflow. Curr. Allergy Asthma Rep. 2007;7:117–125. doi: 10.1007/s11882-007-0009-z. PubMed DOI
Wang Y., Lee H., Gordon B. Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin. Exp. Otorhinolaryngol. 2012;181:181–187. doi: 10.3342/ceo.2012.5.4.181. PubMed DOI PMC
Tan J., Han D., Wang J., Liu T., Wang T., Zang H., Li Y., Wang X. Numerical simulation of normal nasal cavity in Chinese adult: A computational flow dynamics model. Eur. Arch. Otorhinolaryngol. 2012;269:881–889. doi: 10.1007/s00405-011-1771-z. PubMed DOI
Lee K.B., Jeon Y.S., Chung S.K., Kim S.K. Effects of partial middle turbinectomy with varying resection volume and location on nasal functions and airflow characteristics by CFD. Comput. Biol. Med. 2016;77:214–221. doi: 10.1016/j.compbiomed.2016.08.014. PubMed DOI
Leong S.C., Chen X.B., Lee H.P., Wang D.Y. A review of the implications of computational fluid dynamics studies on nasal airflow and physiology. Rhinology. 2010;48:139–145. doi: 10.4193/Rhin09.133. PubMed DOI
Schmidt N., Behrbohm H., Goubergrits L., Hildebrandt T., Brüning J. Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. Int. J. Comput. Assist. Radiol. Surg. 2022;17:1519–1529. doi: 10.1007/s11548-022-02699-9. PubMed DOI
Ormiskangas J., Valtonen O., Harju T., Rautiainen M., Kivekäs I. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Respir. Physiol. Neurobiol. 2022;302:103917. doi: 10.1016/j.resp.2022.103917. PubMed DOI
Russel S.M., Frank-Ito D.O. Gender Differences in Nasal Anatomy and Function Among Caucasians. Facial Plast. Surg. Aesthetic Med. 2022 doi: 10.1089/fpsam.2022.0049. PubMed DOI PMC
Xavier R., Menger D.-J., de Carvalho H.C., Spratley J. An Overview of Computational Fluid Dynamics Preoperative Analysis of the Nasal Airway. Facial Plast. Surg. 2021;37:306–316. doi: 10.1055/s-0041-1722956. PubMed DOI