Synthesis and Biological Evaluation of New Isoxazolyl Steroids as Anti-Prostate Cancer Agents
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
X22Mldg-001
Belarusian Foundation for Fundamental Research
IGA_PrF_2022_007
Palacký University, Olomouc
LX22NPO5102
European Union
PubMed
36362320
PubMed Central
PMC9656436
DOI
10.3390/ijms232113534
PII: ijms232113534
Knihovny.cz E-resources
- Keywords
- CYP17A1, LAPC-4, LNCaP, Weinreb amide, androgen receptor, androgen signaling, isoxazoles, molecular docking, prostate cancer,
- MeSH
- Receptors, Androgen metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Prostatic Neoplasms * drug therapy metabolism MeSH
- Antineoplastic Agents * chemistry MeSH
- Molecular Docking Simulation MeSH
- Steroid 17-alpha-Hydroxylase metabolism MeSH
- Steroids pharmacology therapeutic use MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Receptors, Androgen MeSH
- Antineoplastic Agents * MeSH
- Steroid 17-alpha-Hydroxylase MeSH
- Steroids MeSH
Steroids with a nitrogen-containing heterocycle in the side chain are known as effective inhibitors of androgen signaling and/or testosterone biosynthesis, thus showing beneficial effects for the treatment of prostate cancer. In this work, a series of 3β-hydroxy-5-ene steroids, containing an isoxazole fragment in their side chain, was synthesized. The key steps included the preparation of Weinreb amide, its conversion to acetylenic ketones, and the 1,2- or 1,4-addition of hydroxylamine, depending on the solvent used. The biological activity of the obtained compounds was studied in a number of tests, including their effects on 17α-hydroxylase and 17,20-lyase activity of human CYP17A1 and the ability of selected compounds to affect the downstream androgen receptor signaling. Three derivatives diminished the transcriptional activity of androgen receptor and displayed reasonable antiproliferative activity. The candidate compound, 24j (17R)-17-((3-(2-hydroxypropan-2-yl)isoxazol-5-yl)methyl)-androst-5-en-3β-ol, suppressed the androgen receptor signaling and decreased its protein level in two prostate cancer cell lines, LNCaP and LAPC-4. Interaction of compounds with CYP17A1 and the androgen receptor was confirmed and described by molecular docking.
See more in PubMed
Huggins C., Stevens R.E., Jr., Hodges C.V. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 1941;43:209–223. doi: 10.1001/archsurg.1941.01210140043004. DOI
Saylor P.J. The androgen receptor remains front and centre. Nat. Rev. Clin. Oncol. 2013;10:126–128. doi: 10.1038/nrclinonc.2013.14. PubMed DOI
Sharifi N., McPhaul M.J., Auchus R.J. “Getting from here to there”—Mechanisms and limitations to the activation of the androgen receptor in castration-resistant prostate cancer. J. Investig. Med. 2010;58:938–944. doi: 10.2310/JIM.0b013e3181ff6bb8. PubMed DOI PMC
Fizazi K., Scher H.I., Molina A., Logothetis C.J., Chi K.N., Jones R.J., Staffurth J.N., North S., Vogelzang N.J., Saad F., et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: Final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13:983–992. doi: 10.1016/S1470-2045(12)70379-0. PubMed DOI
Sushko T.A., Gilep A.A., Usanov S.A. Genetics, structure, function, mode of actions and role in cancer development of CYP17. Anticancer Agents Med. Chem. 2014;14:66–76. doi: 10.2174/187152061131300330. PubMed DOI
Latysheva A.S., Zolottsev V.A., Veselovsky A.V., Scherbakov K.A., Morozevich G.E., Pokrovsky V.S., Novikov R.A., Timofeev V.P., Tkachev Y.V., Misharin A.Y. New steroidal oxazolines, benzoxazoles and benzimidazoles related to abiraterone and galeterone. Steroids. 2020;153:108534. doi: 10.1016/j.steroids.2019.108534. PubMed DOI
Zhao J.-W., Guo J.-W., Huang M.-J., You Y.-Z., Wu Z.-H., Liu H.-M., Huang L.-H. Design, synthesis and biological evaluation of new steroidal β-triazoly enones as potent antiproliferative agents. Steroids. 2019;150:108431. doi: 10.1016/j.steroids.2019.108431. PubMed DOI
Jorda R., Řezníčková E., Kiełczewska U., Maj J., Morzycki J.W., Siergiejczyk L., Bazgier V., Berka K., Rárová L., Wojtkielewicz A. Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. Eur. J. Med. Chem. 2019;179:483–492. doi: 10.1016/j.ejmech.2019.06.040. PubMed DOI
Jorda R., Lopes S.M.M., Řezníčková E., Ajani H., Pereira A.V., Gomes C.S.B., Pinho E Melo T.M.V.D. Tetrahydropyrazolo [1,5-a]pyridine-fused steroids and their in vitro biological evaluation in prostate cancer. Eur. J. Med. Chem. 2019;178:168–176. doi: 10.1016/j.ejmech.2019.05.064. PubMed DOI
Hou Q., He C., Lao K., Luo G., You Q., Xiang H. Design and synthesis of novel steroidal imidazoles as dual inhibitors of AR/CYP17 for the treatment of prostate cancer. Steroids. 2019;150:108384. doi: 10.1016/j.steroids.2019.03.003. PubMed DOI
Dalidovich T.S., Hurski A.L., Morozevich G.E., Latysheva A.S., Sushko T.A., Strushkevich N.V., Gilep A.A., Misharin A.Y., Zhabinskii V.N., Khripach V.A. New azole derivatives of [17(20)E]-21-norpregnene: Synthesis and inhibition of prostate carcinoma cell growth. Steroids. 2019;147:10–18. doi: 10.1016/j.steroids.2018.08.004. PubMed DOI
Zolottsev V.A., Tkachev Y.V., Latysheva A.S., Kostin V.A., Novikov R.A., Timofeev V.P., Morozevich G.E., Kuzikov A.V., Shumyantseva V.V., Misharin A.Y. Comparison of [17(20)E]-21-norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids. 2018;129:24–34. doi: 10.1016/j.steroids.2017.11.009. PubMed DOI
Tantawy M.A., Nafie M.S., Elmegeed G.A., Ali I.A.I. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg. Chem. 2017;73:128–146. doi: 10.1016/j.bioorg.2017.06.006. PubMed DOI
Kostin V.A., Zolottsev V.A., Kuzikov A.V., Masamrekh R.A., Shumyantseva V.V., Veselovsky A.V., Stulov S.V., Novikov R.A., Timofeev V.P., Misharin A.Y. Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids. 2016;115:114–122. doi: 10.1016/j.steroids.2016.06.002. PubMed DOI
Szabo N., Ajdukovic J.J., Djurendic E.A., Sakac M.N., Ignath I., Gardi J., Mahmoud G., Klisuric O.R., Jovanovic-Santa S., Penov Gasi K.M., et al. Determination of 17a-hydroxylase-C17,20-lyase (P45017a) enzyme activities and their inhibition by selected steroidal picolyl and picolinylidene compounds. Acta Biol. Hung. 2015;66:41–51. doi: 10.1556/ABiol.66.2015.1.4. PubMed DOI
Stulov S.V., Dugin N.O., Zharkova M.S., Shcherbinin D.S., Kuzikov A.V., Shumantseva V.V., Misharin A.Y., Veselovsky A.V. Interaction of novel oxazoline derivatives of 17(20)E-pregna-5,17(20)-diene with cytochrome P450 17A1. Biochem. Suppl. Ser. B Biomed. Chem. 2015;9:114–120. doi: 10.1134/S1990750815020134. PubMed DOI
Kostin V.A., Latysheva A.S., Zolottsev V.A., Tkachev Y.V., Timofeev V.P., Kuzikov A.V., Shumyantseva V.V., Morozevich G.E., Misharin A.Y. Oxazoline derivatives of [17(20)E]-21-norpregnene—Inhibitors of CYP17A1 activity and proliferation of prostate carcinoma cells. Russ. Chem. Bull. 2018;67:682–687. doi: 10.1007/s11172-018-2122-7. DOI
Hu Q., Hartmann R.W. Chapter 11—The Renaissance of CYP17 Inhibitors for the Treatment of Prostate Cancer. In: Neidle S., editor. Cancer Drug Design and Discovery. 2nd ed. Academic Press; San Diego, CA, USA: 2014. pp. 319–356. DOI
Njar V.C.O., Brodie A.M.H. Discovery and development of galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem. 2015;58:2077–2087. doi: 10.1021/jm501239f. PubMed DOI
Ling Y.Z., Li J.S., Liu Y., Kato K., Klus G.T., Brodie A. 17-Imidazolyl, pyrazolyl, and isoxazolyl androstene derivatives. Novel steroidal inhibitors of human cytochrome C17,20-lyase (P45017a) J. Med. Chem. 1997;40:3297–3304. doi: 10.1021/jm970337k. PubMed DOI
Nnane I.P., Long B.J., Ling Y.Z., Grigoryev D.N., Brodie A.M. Anti-tumour effects and pharmacokinetic profile of 17-(5’-isoxazolyl)androsta-4,16-dien-3-one (L-39) in mice: An inhibitor of androgen synthesis. Br. J. Cancer. 2000;83:74–82. doi: 10.1054/bjoc.2000.1136. PubMed DOI PMC
Nnane I.P., Kato K., Liu Y., Long B.J., Lu Q., Wang X., Ling Y.-Z., Brodie A. Inhibition of androgen synthesis in human testicular and prostatic microsomes and in male rats by novel steroidal compounds. Endocrinology. 1999;140:2891–2897. doi: 10.1210/endo.140.6.6832. PubMed DOI
Banday A.H., Giri A.K., Parveen R., Bashir N. Design and synthesis of D-ring steroidal isoxazolines and oxazolines as potential antiproliferative agents against LNCaP, PC-3 and DU-145 cells. Steroids. 2014;87:93–98. doi: 10.1016/j.steroids.2014.05.009. PubMed DOI
Banday A.H., Singh S., Alam M.S., Reddy D.M., Gupta B.D., Sampath Kumar H.M. Synthesis of novel steroidal D-ring substituted isoxazoline derivatives of 17-oxoandrostanes. Steroids. 2008;73:370–374. doi: 10.1016/j.steroids.2007.10.014. PubMed DOI
Kuzikov A.V., Dugin N.O., Stulov S.V., Shcherbinin D.S., Zharkova M.S., Tkachev Y.V., Timofeev V.P., Veselovsky A.V., Shumyantseva V.V., Misharin A.Y. Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors. Steroids. 2014;88:66–71. doi: 10.1016/j.steroids.2014.06.014. PubMed DOI
Chalyk B.A., Khutorianskyi A., Lysenko A., Fil Y., Kuchkovska Y.O., Gavrilenko K.S., Bakanovych I., Moroz Y.S., Gorlova A.O., Grygorenko O.O. Regioselective synthesis of functionalized 3- or 5-fluoroalkyl isoxazoles and pyrazoles from fluoroalkyl ynones and binucleophiles. J. Org. Chem. 2019;84:15212–15225. doi: 10.1021/acs.joc.9b02258. PubMed DOI PMC
Jeyaveeran J.C., Praveen C., Arun Y., Prince A.A.M., Perumal P.T. Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cytotoxic evaluation of isoxazoles and pyrazoles. J. Chem. Sci. 2016;128:73–83. doi: 10.1007/s12039-015-0993-9. DOI
Xie M., Li M., Liu C., Zhang J., Feng C. Facile regioselective synthesis of 5-hydroxy-4,5-dihydroisoxazoles from acetylenic ketones. J. Heterocycl. Chem. 2012;49:1462–1465. doi: 10.1002/jhet.1033. DOI
Zarecki A., Wicha J. Magnesium in methanol selective reduction of a conjugate double bond in an α,β-unsaturated ester related to pregnadiene. Synthesis. 1996;1996:455–456. doi: 10.1055/s-1996-4248. DOI
Reis L.V., Lobo A.M., Prabhakar S. Enehydroxylamines as versatile compounds in 3,3-sigmatropic rearrangements. Tetrahedron Lett. 1994;35:2747–2750. doi: 10.1016/S0040-4039(00)77022-5. DOI
Reis L.V., Lobo A.M., Prabhakar S., Duarte M.P. 3,3-Sigmatropic rearrangements involving N−O bond-cleavage of enehydroxylamine derivatives. Eur. J. Org. Chem. 2003;2003:190–208. doi: 10.1002/1099-0690(200301)2003:1<190::AID-EJOC190>3.0.CO;2-W. DOI
Al-Awadi N.A., Abdelkhalik M.M., Abdelhamid I.A., Elnagdi M.H. Pyrolytic methods in organic synthesis: Novel routes for the synthesis of 3-oxoalkanenitriles, 2-acyl anilines, and 2-aroyl anilines. Synlett. 2007;2007:2979–2982. doi: 10.1055/s-2007-992355. DOI
Kim S., Park J.H. Selective removal of tetrahydropyranyl ethers in the presence of tert-butyldimethylsilyl ethers with magnesium bromide in ether. Tetrahedron Lett. 1987;28:439–440. doi: 10.1016/S0040-4039(00)95749-6. DOI
Praveen C., Kalyanasundaram A., Perumal P.T. Gold(III)-catalyzed synthesis of isoxazoles by cycloisomerization of α,β-acetylenic oximes. Synlett. 2010;2010:777–781. doi: 10.1002/chin.201029151. DOI
Bird I.M., Abbott D.H. The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature. J. Steroid Biochem. Mol. Biol. 2016;163:136–146. doi: 10.1016/j.jsbmb.2016.04.021. PubMed DOI PMC
Bartonkova I., Novotna A., Dvorak Z. Novel stably transfected human reporter cell line AIZ-AR as a tool for an assessment of human androgen receptor transcriptional activity. PLoS ONE. 2015;10:e0121316. doi: 10.1371/journal.pone.0121316. PubMed DOI PMC
Goggins S., Apsey E.A., Mahon M.F., Frost C.G. Ratiometric electrochemical detection of hydrogen peroxide and glucose. Org. Biomol. Chem. 2017;15:2459–2466. doi: 10.1039/C7OB00211D. PubMed DOI
Pechurskaya T.A., Lukashevich O.P., Gilep A.A., Usanov S.A. Engineering, expression, and purification of “soluble” human cytochrome P45017a and its functional characterization. Biochem. Biokhimiia. 2008;73:806–811. doi: 10.1134/S0006297908070092. PubMed DOI
Bonina T.A., Gilep A.A., Estabrook R.W., Usanov S.A. Engineering of proteolytically stable NADPH-cytochrome P450 reductase. Biochem. Biokhimiia. 2005;70:357–365. doi: 10.1007/s10541-005-0122-3. PubMed DOI
Yablokov E., Florinskaya A., Medvedev A., Sergeev G., Strushkevich N., Luschik A., Shkel T., Haidukevich I., Gilep A., Usanov S., et al. Thermodynamics of interactions between mammalian cytochromes P450 and b5. Arch. Biochem. Biophys. 2017;619:10–15. doi: 10.1016/j.abb.2017.02.006. PubMed DOI
Guryev O.L., Gilep A.A., Usanov S.A., Estabrook R.W. Interaction of apo-cytochrome b5 with cytochromes P4503A4 and P45017A: Relevance of heme transfer reactions. Biochemistry. 2001;40:5018–5031. doi: 10.1021/bi002305w. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC