• This record comes from PubMed

Synthesis and Biological Evaluation of New Isoxazolyl Steroids as Anti-Prostate Cancer Agents

. 2022 Nov 04 ; 23 (21) : . [epub] 20221104

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
X22Mldg-001 Belarusian Foundation for Fundamental Research
IGA_PrF_2022_007 Palacký University, Olomouc
LX22NPO5102 European Union

Steroids with a nitrogen-containing heterocycle in the side chain are known as effective inhibitors of androgen signaling and/or testosterone biosynthesis, thus showing beneficial effects for the treatment of prostate cancer. In this work, a series of 3β-hydroxy-5-ene steroids, containing an isoxazole fragment in their side chain, was synthesized. The key steps included the preparation of Weinreb amide, its conversion to acetylenic ketones, and the 1,2- or 1,4-addition of hydroxylamine, depending on the solvent used. The biological activity of the obtained compounds was studied in a number of tests, including their effects on 17α-hydroxylase and 17,20-lyase activity of human CYP17A1 and the ability of selected compounds to affect the downstream androgen receptor signaling. Three derivatives diminished the transcriptional activity of androgen receptor and displayed reasonable antiproliferative activity. The candidate compound, 24j (17R)-17-((3-(2-hydroxypropan-2-yl)isoxazol-5-yl)methyl)-androst-5-en-3β-ol, suppressed the androgen receptor signaling and decreased its protein level in two prostate cancer cell lines, LNCaP and LAPC-4. Interaction of compounds with CYP17A1 and the androgen receptor was confirmed and described by molecular docking.

See more in PubMed

Huggins C., Stevens R.E., Jr., Hodges C.V. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 1941;43:209–223. doi: 10.1001/archsurg.1941.01210140043004. DOI

Saylor P.J. The androgen receptor remains front and centre. Nat. Rev. Clin. Oncol. 2013;10:126–128. doi: 10.1038/nrclinonc.2013.14. PubMed DOI

Sharifi N., McPhaul M.J., Auchus R.J. “Getting from here to there”—Mechanisms and limitations to the activation of the androgen receptor in castration-resistant prostate cancer. J. Investig. Med. 2010;58:938–944. doi: 10.2310/JIM.0b013e3181ff6bb8. PubMed DOI PMC

Fizazi K., Scher H.I., Molina A., Logothetis C.J., Chi K.N., Jones R.J., Staffurth J.N., North S., Vogelzang N.J., Saad F., et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: Final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13:983–992. doi: 10.1016/S1470-2045(12)70379-0. PubMed DOI

Sushko T.A., Gilep A.A., Usanov S.A. Genetics, structure, function, mode of actions and role in cancer development of CYP17. Anticancer Agents Med. Chem. 2014;14:66–76. doi: 10.2174/187152061131300330. PubMed DOI

Latysheva A.S., Zolottsev V.A., Veselovsky A.V., Scherbakov K.A., Morozevich G.E., Pokrovsky V.S., Novikov R.A., Timofeev V.P., Tkachev Y.V., Misharin A.Y. New steroidal oxazolines, benzoxazoles and benzimidazoles related to abiraterone and galeterone. Steroids. 2020;153:108534. doi: 10.1016/j.steroids.2019.108534. PubMed DOI

Zhao J.-W., Guo J.-W., Huang M.-J., You Y.-Z., Wu Z.-H., Liu H.-M., Huang L.-H. Design, synthesis and biological evaluation of new steroidal β-triazoly enones as potent antiproliferative agents. Steroids. 2019;150:108431. doi: 10.1016/j.steroids.2019.108431. PubMed DOI

Jorda R., Řezníčková E., Kiełczewska U., Maj J., Morzycki J.W., Siergiejczyk L., Bazgier V., Berka K., Rárová L., Wojtkielewicz A. Synthesis of novel galeterone derivatives and evaluation of their in vitro activity against prostate cancer cell lines. Eur. J. Med. Chem. 2019;179:483–492. doi: 10.1016/j.ejmech.2019.06.040. PubMed DOI

Jorda R., Lopes S.M.M., Řezníčková E., Ajani H., Pereira A.V., Gomes C.S.B., Pinho E Melo T.M.V.D. Tetrahydropyrazolo [1,5-a]pyridine-fused steroids and their in vitro biological evaluation in prostate cancer. Eur. J. Med. Chem. 2019;178:168–176. doi: 10.1016/j.ejmech.2019.05.064. PubMed DOI

Hou Q., He C., Lao K., Luo G., You Q., Xiang H. Design and synthesis of novel steroidal imidazoles as dual inhibitors of AR/CYP17 for the treatment of prostate cancer. Steroids. 2019;150:108384. doi: 10.1016/j.steroids.2019.03.003. PubMed DOI

Dalidovich T.S., Hurski A.L., Morozevich G.E., Latysheva A.S., Sushko T.A., Strushkevich N.V., Gilep A.A., Misharin A.Y., Zhabinskii V.N., Khripach V.A. New azole derivatives of [17(20)E]-21-norpregnene: Synthesis and inhibition of prostate carcinoma cell growth. Steroids. 2019;147:10–18. doi: 10.1016/j.steroids.2018.08.004. PubMed DOI

Zolottsev V.A., Tkachev Y.V., Latysheva A.S., Kostin V.A., Novikov R.A., Timofeev V.P., Morozevich G.E., Kuzikov A.V., Shumyantseva V.V., Misharin A.Y. Comparison of [17(20)E]-21-norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids. 2018;129:24–34. doi: 10.1016/j.steroids.2017.11.009. PubMed DOI

Tantawy M.A., Nafie M.S., Elmegeed G.A., Ali I.A.I. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg. Chem. 2017;73:128–146. doi: 10.1016/j.bioorg.2017.06.006. PubMed DOI

Kostin V.A., Zolottsev V.A., Kuzikov A.V., Masamrekh R.A., Shumyantseva V.V., Veselovsky A.V., Stulov S.V., Novikov R.A., Timofeev V.P., Misharin A.Y. Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids. 2016;115:114–122. doi: 10.1016/j.steroids.2016.06.002. PubMed DOI

Szabo N., Ajdukovic J.J., Djurendic E.A., Sakac M.N., Ignath I., Gardi J., Mahmoud G., Klisuric O.R., Jovanovic-Santa S., Penov Gasi K.M., et al. Determination of 17a-hydroxylase-C17,20-lyase (P45017a) enzyme activities and their inhibition by selected steroidal picolyl and picolinylidene compounds. Acta Biol. Hung. 2015;66:41–51. doi: 10.1556/ABiol.66.2015.1.4. PubMed DOI

Stulov S.V., Dugin N.O., Zharkova M.S., Shcherbinin D.S., Kuzikov A.V., Shumantseva V.V., Misharin A.Y., Veselovsky A.V. Interaction of novel oxazoline derivatives of 17(20)E-pregna-5,17(20)-diene with cytochrome P450 17A1. Biochem. Suppl. Ser. B Biomed. Chem. 2015;9:114–120. doi: 10.1134/S1990750815020134. PubMed DOI

Kostin V.A., Latysheva A.S., Zolottsev V.A., Tkachev Y.V., Timofeev V.P., Kuzikov A.V., Shumyantseva V.V., Morozevich G.E., Misharin A.Y. Oxazoline derivatives of [17(20)E]-21-norpregnene—Inhibitors of CYP17A1 activity and proliferation of prostate carcinoma cells. Russ. Chem. Bull. 2018;67:682–687. doi: 10.1007/s11172-018-2122-7. DOI

Hu Q., Hartmann R.W. Chapter 11—The Renaissance of CYP17 Inhibitors for the Treatment of Prostate Cancer. In: Neidle S., editor. Cancer Drug Design and Discovery. 2nd ed. Academic Press; San Diego, CA, USA: 2014. pp. 319–356. DOI

Njar V.C.O., Brodie A.M.H. Discovery and development of galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem. 2015;58:2077–2087. doi: 10.1021/jm501239f. PubMed DOI

Ling Y.Z., Li J.S., Liu Y., Kato K., Klus G.T., Brodie A. 17-Imidazolyl, pyrazolyl, and isoxazolyl androstene derivatives. Novel steroidal inhibitors of human cytochrome C17,20-lyase (P45017a) J. Med. Chem. 1997;40:3297–3304. doi: 10.1021/jm970337k. PubMed DOI

Nnane I.P., Long B.J., Ling Y.Z., Grigoryev D.N., Brodie A.M. Anti-tumour effects and pharmacokinetic profile of 17-(5’-isoxazolyl)androsta-4,16-dien-3-one (L-39) in mice: An inhibitor of androgen synthesis. Br. J. Cancer. 2000;83:74–82. doi: 10.1054/bjoc.2000.1136. PubMed DOI PMC

Nnane I.P., Kato K., Liu Y., Long B.J., Lu Q., Wang X., Ling Y.-Z., Brodie A. Inhibition of androgen synthesis in human testicular and prostatic microsomes and in male rats by novel steroidal compounds. Endocrinology. 1999;140:2891–2897. doi: 10.1210/endo.140.6.6832. PubMed DOI

Banday A.H., Giri A.K., Parveen R., Bashir N. Design and synthesis of D-ring steroidal isoxazolines and oxazolines as potential antiproliferative agents against LNCaP, PC-3 and DU-145 cells. Steroids. 2014;87:93–98. doi: 10.1016/j.steroids.2014.05.009. PubMed DOI

Banday A.H., Singh S., Alam M.S., Reddy D.M., Gupta B.D., Sampath Kumar H.M. Synthesis of novel steroidal D-ring substituted isoxazoline derivatives of 17-oxoandrostanes. Steroids. 2008;73:370–374. doi: 10.1016/j.steroids.2007.10.014. PubMed DOI

Kuzikov A.V., Dugin N.O., Stulov S.V., Shcherbinin D.S., Zharkova M.S., Tkachev Y.V., Timofeev V.P., Veselovsky A.V., Shumyantseva V.V., Misharin A.Y. Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors. Steroids. 2014;88:66–71. doi: 10.1016/j.steroids.2014.06.014. PubMed DOI

Chalyk B.A., Khutorianskyi A., Lysenko A., Fil Y., Kuchkovska Y.O., Gavrilenko K.S., Bakanovych I., Moroz Y.S., Gorlova A.O., Grygorenko O.O. Regioselective synthesis of functionalized 3- or 5-fluoroalkyl isoxazoles and pyrazoles from fluoroalkyl ynones and binucleophiles. J. Org. Chem. 2019;84:15212–15225. doi: 10.1021/acs.joc.9b02258. PubMed DOI PMC

Jeyaveeran J.C., Praveen C., Arun Y., Prince A.A.M., Perumal P.T. Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cytotoxic evaluation of isoxazoles and pyrazoles. J. Chem. Sci. 2016;128:73–83. doi: 10.1007/s12039-015-0993-9. DOI

Xie M., Li M., Liu C., Zhang J., Feng C. Facile regioselective synthesis of 5-hydroxy-4,5-dihydroisoxazoles from acetylenic ketones. J. Heterocycl. Chem. 2012;49:1462–1465. doi: 10.1002/jhet.1033. DOI

Zarecki A., Wicha J. Magnesium in methanol selective reduction of a conjugate double bond in an α,β-unsaturated ester related to pregnadiene. Synthesis. 1996;1996:455–456. doi: 10.1055/s-1996-4248. DOI

Reis L.V., Lobo A.M., Prabhakar S. Enehydroxylamines as versatile compounds in 3,3-sigmatropic rearrangements. Tetrahedron Lett. 1994;35:2747–2750. doi: 10.1016/S0040-4039(00)77022-5. DOI

Reis L.V., Lobo A.M., Prabhakar S., Duarte M.P. 3,3-Sigmatropic rearrangements involving N−O bond-cleavage of enehydroxylamine derivatives. Eur. J. Org. Chem. 2003;2003:190–208. doi: 10.1002/1099-0690(200301)2003:1<190::AID-EJOC190>3.0.CO;2-W. DOI

Al-Awadi N.A., Abdelkhalik M.M., Abdelhamid I.A., Elnagdi M.H. Pyrolytic methods in organic synthesis: Novel routes for the synthesis of 3-oxoalkanenitriles, 2-acyl anilines, and 2-aroyl anilines. Synlett. 2007;2007:2979–2982. doi: 10.1055/s-2007-992355. DOI

Kim S., Park J.H. Selective removal of tetrahydropyranyl ethers in the presence of tert-butyldimethylsilyl ethers with magnesium bromide in ether. Tetrahedron Lett. 1987;28:439–440. doi: 10.1016/S0040-4039(00)95749-6. DOI

Praveen C., Kalyanasundaram A., Perumal P.T. Gold(III)-catalyzed synthesis of isoxazoles by cycloisomerization of α,β-acetylenic oximes. Synlett. 2010;2010:777–781. doi: 10.1002/chin.201029151. DOI

Bird I.M., Abbott D.H. The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature. J. Steroid Biochem. Mol. Biol. 2016;163:136–146. doi: 10.1016/j.jsbmb.2016.04.021. PubMed DOI PMC

Bartonkova I., Novotna A., Dvorak Z. Novel stably transfected human reporter cell line AIZ-AR as a tool for an assessment of human androgen receptor transcriptional activity. PLoS ONE. 2015;10:e0121316. doi: 10.1371/journal.pone.0121316. PubMed DOI PMC

Goggins S., Apsey E.A., Mahon M.F., Frost C.G. Ratiometric electrochemical detection of hydrogen peroxide and glucose. Org. Biomol. Chem. 2017;15:2459–2466. doi: 10.1039/C7OB00211D. PubMed DOI

Pechurskaya T.A., Lukashevich O.P., Gilep A.A., Usanov S.A. Engineering, expression, and purification of “soluble” human cytochrome P45017a and its functional characterization. Biochem. Biokhimiia. 2008;73:806–811. doi: 10.1134/S0006297908070092. PubMed DOI

Bonina T.A., Gilep A.A., Estabrook R.W., Usanov S.A. Engineering of proteolytically stable NADPH-cytochrome P450 reductase. Biochem. Biokhimiia. 2005;70:357–365. doi: 10.1007/s10541-005-0122-3. PubMed DOI

Yablokov E., Florinskaya A., Medvedev A., Sergeev G., Strushkevich N., Luschik A., Shkel T., Haidukevich I., Gilep A., Usanov S., et al. Thermodynamics of interactions between mammalian cytochromes P450 and b5. Arch. Biochem. Biophys. 2017;619:10–15. doi: 10.1016/j.abb.2017.02.006. PubMed DOI

Guryev O.L., Gilep A.A., Usanov S.A., Estabrook R.W. Interaction of apo-cytochrome b5 with cytochromes P4503A4 and P45017A: Relevance of heme transfer reactions. Biochemistry. 2001;40:5018–5031. doi: 10.1021/bi002305w. PubMed DOI

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...