Strategies of Advanced Airway Management in Out-of-Hospital Cardiac Arrest during Intra-Arrest Hypothermia: Insights from the PRINCESS Trial

. 2022 Oct 28 ; 11 (21) : . [epub] 20221028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36362599

Grantová podpora
20140735 Swedish Heart-Lung Foundation

BACKGROUND: Trans-nasal evaporative cooling is an effective method to induce intra-arrest therapeutic hypothermia in out-of-hospital cardiac arrest (OHCA). The use of supraglottic airway devices (SGA) instead of endotracheal intubation may enable shorter time intervals to induce cooling. We aimed to study the outcomes in OHCA patients receiving endotracheal intubation (ETI) or a SGA during intra-arrest trans-nasal evaporative cooling. METHODS: This is a pre-specified sub-study of the PRINCESS trial (NCT01400373) that included witnessed OHCA patients randomized during resuscitation to trans-nasal intra-arrest cooling vs. standard care followed by temperature control at 33 °C for 24 h. For this study, patients randomized to intra-arrest cooling were stratified according to the use of ETI vs. SGA prior to the induction of cooling. SGA was placed by paramedics in the first-tier ambulance or by physicians or anesthetic nurses in the second tier while ETI was performed only after the arrival of the second tier. Propensity score matching was used to adjust for differences at the baseline between the two groups. The primary outcome was survival with good neurological outcome, defined as cerebral performance category (CPC) 1-2 at 90 days. Secondary outcomes included time to place airway, overall survival at 90 days, survival with complete neurologic recovery (CPC 1) at 90 days and sustained return of spontaneous circulation (ROSC). RESULTS: Of the 343 patients randomized to the intervention arm (median age 64 years, 24% were women), 328 received intra-arrest cooling and had data on the airway method (n = 259 with ETI vs. n = 69 with SGA). Median time from the arrival of the first-tier ambulance to successful airway management was 8 min for ETI performed by second tier and 4 min for SGA performed by the first or second tier (p = 0.001). No significant differences in the probability of good neurological outcome (OR 1.43, 95% CI 0.64-3.01), overall survival (OR 1.26, 95% CI 0.57-2.55), full neurological recovery (OR 1.17, 95% CI 0.52-2.73) or sustained ROSC (OR 0.88, 95% CI 0.50-1.52) were observed between ETI and SGA. CONCLUSIONS: Among the OHCA patients treated with trans-nasal evaporative intra-arrest cooling, the use of SGA was associated with a significantly shorter time to airway management and with similar outcomes compared to ETI.

Zobrazit více v PubMed

Atwood C., Eisenberg M.S., Herlitz J., Rea T.D. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005;67:75–80. doi: 10.1016/j.resuscitation.2005.03.021. PubMed DOI

Gräsner J.T., Wnent J., Herlitz J., Perkins G.D., Lefering R., Tjelmeland I., Koster R.W., Masterson S., Rossell-Ortiz F., Maurer H., et al. Survival after out-of-hospital cardiac arrest in Europe—Results of the EuReCa TWO study. Resuscitation. 2020;148:218–226. doi: 10.1016/j.resuscitation.2019.12.042. PubMed DOI

Link M.S., Berkow L.C., Kudenchuk P.J., Halperin H.R., Hess E.P., Moitra V.K., Neumar R.W., O’Neil B.J., Paxton J.H., Silvers S.M., et al. Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S444–S464. doi: 10.1161/CIR.0000000000000261. PubMed DOI

McMullan J., Gerecht R., Bonomo J., Robb R., McNally B., Donnelly J., Wang H.E. Airway management and out-of-hospital cardiac arrest outcome in the CARES registry. Resuscitation. 2014;85:617–622. doi: 10.1016/j.resuscitation.2014.02.007. PubMed DOI

Stewart R.D., Paris P.M., Winter P.M., Pelton G.H., Cannon G.M. Field endotracheal intubation by paramedical personnel. Success rates and complications. Chest. 1984;85:341–345. doi: 10.1378/chest.85.3.341. PubMed DOI

Wang H.E., Yealy D.M. Out-of-Hospital Endotracheal Intubation: Where Are We? Ann. Emerg. Med. 2006;47:532–541. doi: 10.1016/j.annemergmed.2006.01.016. PubMed DOI

Hasegawa K., Hiraide A., Chang Y., Brown D.F.M. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA J. Am. Med. Assoc. 2013;309:257–266. doi: 10.1001/jama.2012.187612. PubMed DOI

Wang H.E., Simeone S.J., Weaver M.D., Callaway C.W. Interruptions in Cardiopulmonary Resuscitation From Paramedic Endotracheal Intubation. Ann. Emerg. Med. 2009;54:645–652.e1. doi: 10.1016/j.annemergmed.2009.05.024. PubMed DOI

Aufderheide T.P., Lurie K.G. Death by hyperventilation: A common and life-threatening problem during cardiopulmonary resuscitation. Crit. Care Med. 2004;32:S345–S351. doi: 10.1097/01.CCM.0000134335.46859.09. PubMed DOI

Katz S.H., Falk J.L. Misplaced endotracheal tubes by paramedics in an urban emergency medical services system. Ann. Emerg. Med. 2001;37:32–37. doi: 10.1067/mem.2001.112098. PubMed DOI

Kurola J., Harve H., Kettunen T., Laakso J.P., Gorski J., Paakkonen H., Silfvast T. Airway management in cardiac arrest—Comparison of the laryngeal tube, tracheal intubation and bag-valve mask ventilation in emergency medical training. Resuscitation. 2004;61:149–153. doi: 10.1016/j.resuscitation.2004.01.014. PubMed DOI

Kurz M.C., Prince D.K., Christenson J., Carlson J., Stub D., Cheskes S., Lin S., Aziz M., Austin M., Vaillancourt C., et al. Association of advanced airway device with chest compression fraction during out-of-hospital cardiopulmonary arrest. Resuscitation. 2016;98:35–40. doi: 10.1016/j.resuscitation.2015.10.011. PubMed DOI

Benger J.R., Kirby K., Black S., Brett S.J., Clout M., Lazaroo M.J., Nolan J.P., Reeves B.C., Robinson M., Scott L.J., et al. Effect of a strategy of a supraglottic airway device vs tracheal intubation during out-of-hospital cardiac arrest on functional outcome the AIRWAYS-2 randomized clinical trial. JAMA J. Am. Med. Assoc. 2018;320:779–791. doi: 10.1001/jama.2018.11597. PubMed DOI PMC

Wang H.E., Schmicker R.H., Daya M.R., Stephens S.W., Idris A.H., Carlson J.N., Riccardo Colella M., Herren H., Hansen M., Richmond N.J., et al. Effect of a strategy of initial laryngeal tube insertion vs endotracheal intubation on 72-hour survival in adults with out-of-hospital cardiac arrest a randomized clinical trial. JAMA J. Am. Med. Assoc. 2018;320:769–778. doi: 10.1001/jama.2018.7044. PubMed DOI PMC

Benoit J.L., Gerecht R.B., Steuerwald M.T., McMullan J.T. Endotracheal intubation versus supraglottic airway placement in out-of-hospital cardiac arrest: A meta-analysis. Resuscitation. 2015;93:20–26. doi: 10.1016/j.resuscitation.2015.05.007. PubMed DOI

Mild Therapeutic Hypothermia to Improve the Neurologic Outcome after Cardiac Arrest. N. Engl. J. Med. 2002;346:549–556. doi: 10.1056/NEJMoa012689. PubMed DOI

Abella B.S., Zhao D., Alvarado J., Hamann K., Vanden Hoek T.L., Becker L.B. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109:2786–2791. doi: 10.1161/01.CIR.0000131940.19833.85. PubMed DOI

Awad A., Taccone F.S., Jonsson M., Forsberg S., Hollenberg J., Truhlar A., Ringh M., Abella B.S., Becker L.B., Vincent J.-L., et al. Time to intra-arrest therapeutic hypothermia in out-of-hospital cardiac arrest patients and its association with neurologic outcome: A propensity matched sub-analysis of the PRINCESS trial. Intensive Care Med. 2020;46:1361–1370. doi: 10.1007/s00134-020-06024-3. PubMed DOI PMC

Taccone F.S., Hollenberg J., Forsberg S., Truhlar A., Jonsson M., Annoni F., Gryth D., Ringh M., Cuny J., Busch H.J., et al. Effect of intra-arrest trans-nasal evaporative cooling in out-of-hospital cardiac arrest: A pooled individual participant data analysis. Crit. Care. 2021;25:198. doi: 10.1186/s13054-021-03583-9. PubMed DOI PMC

Nordberg P., Taccone F.S., Truhlar A., Forsberg S., Hollenberg J., Jonsson M., Cuny J., Goldstein P., Vermeersch N., Higuet A., et al. Effect of Trans-Nasal Evaporative Intra-arrest Cooling on Functional Neurologic Outcome in Out-of-Hospital Cardiac Arrest: The PRINCESS Randomized Clinical Trial. JAMA. 2019;321:1677–1685. doi: 10.1001/jama.2019.4149. PubMed DOI PMC

Castrén M., Nordberg P., Svensson L., Taccone F., Vincent J.L., Desruelles D., Eichwede F., Mols P., Schwab T., Vergnion M., et al. Intra-arrest transnasal evaporative cooling: A randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal cooling effectiveness) Circulation. 2010;122:729–736. doi: 10.1161/CIRCULATIONAHA.109.931691. PubMed DOI

Nordberg P., Taccone F.S., Castren M., Truhlár A., Desruelles D., Forsberg S., Hollenberg J., Vincent J.L., Svensoon L. Design of the PRINCESS trial: Pre-hospital resuscitation intra-nasal cooling effectiveness survival study (PRINCESS) BMC Emerg. Med. 2013;13:21. doi: 10.1186/1471-227X-13-21. PubMed DOI PMC

Abou-Chebl A., Sung G., Barbut D., Torbey M. Local brain temperature reduction through intranasal cooling with the rhinochill device: Preliminary safety data in brain-injured patients. Stroke. 2011;42:2164–2169. doi: 10.1161/STROKEAHA.110.613000. PubMed DOI

Jennett B., Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1:480–484. doi: 10.1016/S0140-6736(75)92830-5. PubMed DOI

van Buuren S., Groothuis-Oudshoorn K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011;45:1–67. doi: 10.18637/jss.v045.i03. DOI

Ling A.Y., Montez-Rath M.E., Mathur M.B., Kapphahn K., Desai M. How to apply multiple imputation in propensity score matching with partially observed confounders: A simulation study and practical recommendations. J. Mod. Appl. Stat. Methods. 2019;19:eP3439. doi: 10.22237/jmasm/1608552120. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...