Iron Deficiency in Patients with Advanced Heart Failure
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1462/2021
Masaryk University
PubMed
36363528
PubMed Central
PMC9697608
DOI
10.3390/medicina58111569
PII: medicina58111569
Knihovny.cz E-zdroje
- Klíčová slova
- advanced heart failure, anaemia, ferritin, iron deficiency, transferrin saturation,
- MeSH
- anemie z nedostatku železa * komplikace epidemiologie MeSH
- anemie * komplikace MeSH
- deficit železa * MeSH
- ferritiny MeSH
- lidé MeSH
- srdeční selhání * komplikace epidemiologie diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ferritiny MeSH
Background and Objectives: Iron deficiency (ID) is a common comorbidity in patients with heart failure. It is associated with reduced physical performance, frequent hospitalisations for heart failure decompensation, and high cardiovascular and overall mortality. The aim was to determine the prevalence of ID in patients with advanced heart failure on the waiting list for heart transplantation. Methods and Materials: We included 52 patients placed on the waiting list for heart transplantation in 2021 at our centre. The cohort included seven patients with LVAD (left ventricle assist device) as a bridge to transplantation implanted before the time of results collection. In addition to standard tests, the parameters of iron metabolism were monitored. ID was defined as a ferritin value <100 µg/L, or 100−299 µg/L if transferrin saturation (T-sat) is <20%. Results: ID was present in 79% of all subjects, but only in 35% of these patients anaemia was expressed. In the group without LVAD, ID was present in 82%, a median (lower−upper quartile) of ferritin level was 95.4 (62.2−152.1) µg/mL and mean T-sat was 0.18 ± 0.09. In LVAD group, ID was present in 57%, ferritin level was 268 (106−368) µg/mL and mean T-sat was 0.14 ± 0.04. Haemoglobin concentration was the same in patients with or without ID (133 ± 16) vs. (133 ± 23). ID was not associated with anaemia defined with regard to patient’s gender. In 40.5% of cases, iron deficiency was accompanied by chronic renal insufficiency, compared to 12.5% of the patients without ID. In the patients with LVAD, ID was present in four out of seven patients, but the group was too small for reliable statistical testing due to low statistical power. Conclusions: ID was present in the majority of patients with advanced heart failure and was not always accompanied by anaemia and renal insufficiency. Research on optimal markers for the diagnosis of iron deficiency, especially for specific groups of patients with heart failure, is still ongoing.
Center for Cardiovascular and Transplant Surgery 65691 Brno Czech Republic
Faculty of Medicine Masaryk University 60200 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 60200 Brno Czech Republic
Zobrazit více v PubMed
Anand I.S., Gupta P. Anemia and iron deficiency in heart failure. Circulation. 2018;138:80–98. doi: 10.1161/CIRCULATIONAHA.118.030099. PubMed DOI
Iorio A., Senni M., Barbati G., Greene S.J., Poli S., Zambon E., Di Nora C., Cioffi G., Tarantini L., Gavazzi A., et al. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: A community-based study. Eur. J. Heart Fail. 2018;20:1257–1266. doi: 10.1002/ejhf.1202. PubMed DOI
Kassebaum N.J., Jasrasaria R., Naghavi M., Wulf S.K., Johns N., Lozano R., Regan M., Weatherall D., Chou D.P., Eisele T.P., et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2013;123:615–624. doi: 10.1182/blood-2013-06-508325. PubMed DOI PMC
Camaschella C. Iron deficiency. Blood. 2018;5:815944. doi: 10.1182/blood-2018-05-815944. DOI
Melenovsky V., Petrak J., Mracek T., Benes J., Borlaug B.A., Nůsková H., Pluhacek T., Spatenka J., Kovalcikova J., Drahota Z., et al. Myocardial iron content and mitochondrial function in human heart failure: A direct tissue analysis. Eur. J. Heart Fail. 2018;19:522–530. doi: 10.1002/ejhf.640. PubMed DOI
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102:783–788. doi: 10.1182/blood-2003-03-0672. PubMed DOI
Nemeth E., Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009;122:78–86. doi: 10.1159/000243791. PubMed DOI PMC
Nemeth E. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–2093. doi: 10.1126/science.1104742. PubMed DOI
Auerbach M., Adamson J.W. How we diagnose and treat ID anemia. Am. J. Hematol. 2015;91:31–38. doi: 10.1002/ajh.24201. PubMed DOI
Gafter-Gvili A., Schechter A., Rozen-Zvi B. ID anemia in chronic kidney disease. Acta Haematol. 2019;142:44–50. doi: 10.1159/000496492. PubMed DOI
Van der Wal H.H., Grote Beverborg N., Dickstein K., Anker S.D., Lang C.C., Ng L.L., van Veldhuisen D.J., Voors A.A., van der Meer P. Iron deficiency in worsening heart failure is associated with reduced estimated protein intake, fluid retention, inflammation, and antiplatelet use. Eur. Heart J. 2019;40:3616–3625. doi: 10.1093/eurheartj/ehz680. PubMed DOI PMC
Slaughter M.S. Long-term continuous flow left ventricular assist device support and end-organ function: Prospects for destination therapy. J. Card. Surg. 2010;25:490–494. doi: 10.1111/j.1540-8191.2010.01075.x. PubMed DOI
Amione-Guerra J., Cruz-Solbes A.S., Bhimaraj A., Trachtenberg B.H., Pingali S.R., Estep J.D., Park M.H., Guha A. Anemia after continuous-flow left ventricular assist device implantation: Characteristics and implications. Int. J. Artif. Organs. 2017;40:481–488. doi: 10.5301/ijao.5000607. PubMed DOI
Cappellini M.D., Comin-Colet J., de Francisco A., Dignass A., Doehner W., Lam C.S., Macdougall I.C., Rogler G., Camaschella C., Kadir R., et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017;92:1068–1078. doi: 10.1002/ajh.24820. PubMed DOI PMC
Fertrin K.Y. Diagnosis and management of ID in chronic inflammatory conditions (CIC): Is too little iron making your patient sick? Hematology. 2020;2020:478–486. doi: 10.1182/hematology.2020000132. PubMed DOI PMC
Okonko D.O., Mandal A.K.J., Missouris C.G., Poole-Wilson P.A. Disordered iron homeostasis in chronic heart failure. J. Am. Coll. Cardiol. 2011;58:1241–1251. doi: 10.1016/j.jacc.2011.04.040. PubMed DOI
McDonagh T., Damy T., Doehner W., Lam C.S., Sindone A., Van Der Meer P., Cohen-Solal A., Kindermann I., Manito N., Pfister O., et al. Screening, diagnosis and treatment of iron deficiency in chronic heart failure: Putting the 2016 European Society of Cardiology heart failure guidelines into clinical practice. Eur. J. Heart Fail. 2018;20:1664–1672. doi: 10.1002/ejhf.1305. PubMed DOI PMC
Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. PubMed DOI
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Ponikowski P., Kirwan B.-A., Anker S.D., McDonagh T., Dorobantu M., Drozdz J., Fabien V., Filippatos G., Göhring U.M., Keren A., et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet. 2020;396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4. PubMed DOI
WHO . Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Vitamin and Mineral Nutrition Information System. World Health Organization; Geneva, Switzerland: 2011. [(accessed on 15 March 2022)]. WHO/NMH/NHD/MNM/11.1. Available online: http://www.who.int/vmnis/indicators/haemoglobin.pdf.
Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015;28:233–271. doi: 10.1016/j.echo.2014.10.003. PubMed DOI
Masini G., Graham F.J., Pellicori P., Cleland J.G., Cuthbert J.J., Kazmi S., Inciardi R.M., Clark A.L. Criteria for iron deficiency in patients with heart failure. J. Am. Coll. Cardiol. 2022;79:341–351. doi: 10.1016/j.jacc.2021.11.039. PubMed DOI
Beverborg N.G., Klip I.T., Meijers W.C., Voors A.A., Vegter E.L., van der Wal H.H., Swinkels D.W., van Pelt J., Mulder A.B., Bulstra S.K., et al. Definition of ID based on the gold standard of bone marrow iron staining in heart failure patients. Circ. Heart Fail. 2018;11:e004519. doi: 10.1161/CIRCHEARTFAILURE.117.004519. PubMed DOI
Martens P., Dupont M., Dauw J., Nijst P., Herbots L., Dendale P., Vandervoort P., Bruckers L., Tang W.H.W., Mullens W. The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy—The IRON-CRT trial. Eur. Heart J. 2021;42:4905–4914. doi: 10.1093/eurheartj/ehab411. PubMed DOI PMC
Fitzsimons S., Poppe K.K., Choi Y., Devlin G., Lund M., Lam C.S., Troughton R., Richards A.M., Doughty R.N. Relationship Between soluble transferrin receptor and clinical outcomes in patients with heart failure according to ejection fraction phenotype: The New Zealand PEOPLE Study. J. Card. Fail. 2022;28:1255–1263. doi: 10.1016/j.cardfail.2021.12.018. PubMed DOI
rosman-Rimon L., McDonald M.A., Jacobs I., Tumiati L.C., Bar-Ziv S.P., Shogilev D.J., Mociornita A.G., Ghashghai A., Chruscinski A., Cherney D.Z.I., et al. Markers of inflammation in recipients of continuous-flow left ventricular assist devices. ASAIO J. 2014;60:657–663. doi: 10.1097/MAT.0000000000000129. PubMed DOI
Sciaccaluga C., Ghionzoli N., Mandoli G.E., D’Ascenzi F., Focardi M., Valente S., Cameli M. Biomarkers in patients with left ventricular assist device: An insight on current evidence. Biomolecules. 2022;12:334. doi: 10.3390/biom12020334. PubMed DOI PMC
Veenis J.F., Radhoe S.P., Roest S., Caliskan K., Constantinescu A.A., Manintveld O.C., Brugts J.J. Prevalence of iron deficiency and iron administration in left ventricular assist device and heart transplantation patients. ASAIO J. 2022;68:899–906. doi: 10.1097/MAT.0000000000001585. PubMed DOI
Jankowska E.A., Rozentryt P., Witkowska A., Nowak J., Hartmann O., Ponikowska B., Borodulin-Nadzieja L., Banasiak W., Polonski L., Filippatos G., et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010;31:1872–1880. doi: 10.1093/eurheartj/ehq158. PubMed DOI
Toblli J.E., Lombraña A., Duarte P., Di Gennaro F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 2007;50:1657–1665. doi: 10.1016/j.jacc.2007.07.029. PubMed DOI