Targeted and Non-Targeted HPLC Analysis of Coffee-Based Products as Effective Tools for Evaluating the Coffee Authenticity
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
36364245
PubMed Central
PMC9655399
DOI
10.3390/molecules27217419
PII: molecules27217419
Knihovny.cz E-resources
- Keywords
- HPLC, coffee, non-targeted fingerprint, targeted analysis,
- MeSH
- Coffee * chemistry MeSH
- Beverages * MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Coffee * MeSH
Coffee is a very popular beverage worldwide. However, its composition and characteristics are affected by a number of factors, such as geographical and botanical origin, harvesting and roasting conditions, and brewing method used. As coffee consumption rises, the demands on its high quality and authenticity naturally grows as well. Unfortunately, at the same time, various tricks of coffee adulteration occur more frequently, with the intention of quick economic profit. Many analytical methods have already been developed to verify the coffee authenticity, in which the high-performance liquid chromatography (HPLC) plays a crucial role, especially thanks to its high selectivity and sensitivity. Thus, this review summarizes the results of targeted and non-targeted HPLC analysis of coffee-based products over the last 10 years as an effective tool for determining coffee composition, which can help to reveal potential forgeries and non-compliance with good manufacturing practice, and subsequently protects consumers from buying overpriced low-quality product. The advantages and drawbacks of the targeted analysis are specified and contrasted with those of the non-targeted HPLC fingerprints, which simply consider the chemical profile of the sample, regardless of the determination of individual compounds present.
See more in PubMed
Núñez N., Collado X., Martínez C., Saurina J., Núñez O. Authentication of the origin, variety and roasting degree of coffee samples by non-targeted HPLC-UV fingerprinting and chemometrics. Application to the detection and quantitation of adulterated coffee samples. Foods. 2020;9:378. doi: 10.3390/foods9030378. PubMed DOI PMC
International Coffee Organization (ICO) Total Production by All Exporting Countries. [(accessed on 20 June 2022)]. Available online: http://www.ico.org/prices/po-production.pdf.
Diviš P., Pořízka J., Kříkala J. The effect of coffee beans roasting on its chemical composition. Potravinarstvo. 2019;13:344–350. doi: 10.5219/1062. DOI
Davis A.P., Govaerts R., Bridson D.M., Stoffelen P. An annotated taxonomic conspectus of the Genus Coffea (Rubiaceae) Bot. J. Linn. Soc. 2006;152:465–512. doi: 10.1111/j.1095-8339.2006.00584.x. DOI
Keidel A., von Stetten D., Rodrigues C., Máguas C., Hildebrandt P. Discrimination of Green Arabica and Robusta coffee beans by raman spectroscopy. J. Agric. Food Chem. 2010;58:11187–11192. doi: 10.1021/jf101999c. PubMed DOI
Feria-Morales A.M. Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Qual. Prefer. 2002;13:355–367. doi: 10.1016/S0950-3293(02)00028-9. DOI
Van der Vossen H., Bertrand B., Charrier A. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): A review. Euphytica. 2015;204:243–256. doi: 10.1007/s10681-015-1398-z. DOI
Wongsa P., Khampa N., Horadee S., Chaiwarith J., Rattanapanone N. Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food Chem. 2019;283:579–587. doi: 10.1016/j.foodchem.2019.01.088. PubMed DOI
Clarke R., Macrae J.R., editors. Coffee Volume 1: Chemistry. 1st ed. Springer; Dordrecht, The Netherlands: 2012. DOI
Toledo P., Pezza L., Pezza H.R., Toci A.T. Relationship between the different aspects related to coffee quality and their volatile compounds. Compr. Rev. Food Sci. Food Saf. 2016;15:705–719. doi: 10.1111/1541-4337.12205. PubMed DOI
Bobková A., Jakabová S., Belej Ľ., Jurčaga L., Čapla J., Bobko M., Demianová A. Analysis of caffeine and chlorogenic acids content regarding the preparation method of coffee beverage. Int. J. Food Eng. 2021;17:403–410. doi: 10.1515/ijfe-2020-0143. DOI
Esteban-Díez I., González-Sáiz J.M., Sáenz-González C., Pizarro C. Coffee varietal differentiation based on near infrared spectroscopy. Talanta. 2007;71:221–229. doi: 10.1016/j.talanta.2006.03.052. PubMed DOI
Perez M., Domínguez-López I., López-Yerena A., Vallverdú Queralt A. Current strategies to guarantee the authenticity of coffee. Crit. Rev. Food Sci. Nutr. 2021;61:1–16. doi: 10.1080/10408398.2021.1951651. PubMed DOI
Rega F.V., Ferranti P. Life Cycle Assessment of Coffee Production in Time of Global Change. In: Ferranti P., Berrym E.M., Anderson J.R., editors. Encyclopedia of Food Security and Sustainability. Volume 3. Elsevier; Amsterdam, The Netherlands: 2019. pp. 497–502. DOI
Ferreira T., Galluzzi L., de Paulis T., Farah A. Three centuries on the science of coffee authenticity control. Food Res. Int. 2021;149:110690. doi: 10.1016/j.foodres.2021.110690. PubMed DOI
United States Department of Agriculture—USDA Coffee: World Markets and Trade. [(accessed on 20 June 2022)];2021 Available online: https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf.
International Coffee Organization (ICO) Coffee Market Report. [(accessed on 20 June 2022)]. Available online: https://www.ico.org/news/August%202020%20Market%20Report-E-attachment.pdf.
Del Campo G., Berregi I., Caracena R., Zuriarrain J. Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta. 2010;81:367–371. doi: 10.1016/j.talanta.2009.12.010. PubMed DOI
Bertrand B., Boulanger R., Dussert S., Ribeyre F., Berthiot L., Descroix F., Joët T. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem. 2012;135:2575–2583. doi: 10.1016/j.foodchem.2012.06.060. PubMed DOI
Zarebska M., Stanek N., Barabosz K., Jaszkiewicz A., Kulesza R., Matejuk R., Andrzejewski D., Biłos Ł., Porada A. Comparison of chemical compounds and their influence on the taste of coffee depending on green beans storage conditions. Sci. Rep. 2022;12:2674. doi: 10.1038/s41598-022-06676-9. PubMed DOI PMC
Jeszka-Skowron M., Zgoła-Grześkowiak A., Grześkowiak T. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur. Food Res. Technol. 2015;240:19–31. doi: 10.1007/s00217-014-2356-z. DOI
Prihadi A.R., Maimulyanti A. Chemical Compounds of Coffee Ground and Spent Coffee Ground for Pharmaceutical Products. Pharm. Biomed. Sci. J. 2020;2:1–4. doi: 10.15408/pbsj.v2i2.18338. DOI
Butt M.S., Sultan M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011;51:363–373. doi: 10.1080/10408390903586412. PubMed DOI
George S.E., Ramalakshmi K., Mohan Rao L.J. A perception on health benefits of coffee. Crit. Rev. Food Sci. Nutr. 2008;48:464–486. doi: 10.1080/10408390701522445. PubMed DOI
Prediger R.D.S. Effects of caffeine in Parkinson’s disease: From neuroprotection to the management of motor and non-motor symptoms. J. Alzheimers Dis. 2010;20:205–220. doi: 10.3233/JAD-2010-091459. PubMed DOI
Kwon S.-H., Lee H.-K., Kim J.-A., Hong S.-I., Kim H.-C., Jo T.-H., Park Y.-I., Lee C.-K., Kim Y.-B., Lee S.-Y., et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 2010;649:210–217. doi: 10.1016/j.ejphar.2010.09.001. PubMed DOI
Chu Y.-F., Chang W.-H., Black R.M., Liu J.-R., Sompol P., Chen Y., Wei H., Zhao Q., Cheng I.H. Crude caffeine reduces memory impairment and amyloid β1-42 levels in an Alzheimer’s mouse model. Food Chem. 2012;135:2095–2102. doi: 10.1016/j.foodchem.2012.04.148. PubMed DOI
Arendash G.W., Mori T., Cao C., Mamcarz M., Runfeldt M., Dickson A., Rezai-Zadeh K., Tan J., Citron B.A., Lin X., et al. Caffeine reverses cognitive impairment and decreases brain amyloid-β levels in aged alzheimer’s disease mice. J. Alzheimers Dis. 2009;17:661–680. doi: 10.3233/JAD-2009-1087. PubMed DOI
Arendash G.W., Cao C. Caffeine and coffee as therapeutics against Alzheimer’s Disease. J. Alzheimers Dis. 2010;20:S117–S126. doi: 10.3233/JAD-2010-091249. PubMed DOI
Gokcen B.B., Sanlier N. Coffee consumption and disease correlations. Crit. Rev. Food Sci. Nutr. 2019;59:336–348. doi: 10.1080/10408398.2017.1369391. PubMed DOI
Johnson S., Koh W.-P., Wang R., Govindarajan S., Yu M.C., Yuan J.-M. Coffee consumption and reduced risk of hepatocellular carcinoma: Fndings from the Singapore Chinese Health Study. Cancer Causes Control. 2011;22:503–510. doi: 10.1007/s10552-010-9725-0. PubMed DOI PMC
Esquivel P., Jimenez V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012;46:488–495. doi: 10.1016/j.foodres.2011.05.028. DOI
Ludwig I.A., Clifford M.N., Lean M.E.J., Ashihara H., Crozier A. Coffee: Biochemistry and potential impact on health. Food Funct. 2014;5:1695–1717. doi: 10.1039/C4FO00042K. PubMed DOI
Muchtaridi M., Lestari D., Ikram N.K.K., Gazzali A.M., Hariono M., Wahab H.A. Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound. Molecules. 2021;26:3402. doi: 10.3390/molecules26113402. PubMed DOI PMC
Bułdak R.J., Hejmo T., Osowski M., Bułdak Ł., Kukla M., Polaniak R., Birkner E. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro. Molecules. 2018;23:3309. doi: 10.3390/molecules23123309. PubMed DOI PMC
Farah A., Donangelo C.M. Phenolic compounds in coffee. Braz. J. Plant Physiol. 2006;18:23–36. doi: 10.1590/S1677-04202006000100003. DOI
Jeszka-Skowron M., Stanisz E., De Peña M.P. Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT. 2016;73:243–250. doi: 10.1016/j.lwt.2016.06.018. DOI
Yu X., Bao Z., Zou J., Dong J. Coffee consumption and risk of cancers: A meta-analysis of cohort studies. BMC Cancer. 2011;11:96–106. doi: 10.1186/1471-2407-11-96. PubMed DOI PMC
Hayakawa S., Ohishi T., Miyoshi N., Oishi Y., Nakamura Y., Isemura M. Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid. Molecules. 2020;25:4553. doi: 10.3390/molecules25194553. PubMed DOI PMC
Regazzoni L., Saligari F., Marinello C., Rossoni G., Aldini G., Carini M., Orioli M. Coffee silver skin as a source of polyphenols: High resolution mass spectrometric profiling of components and antioxidant activity. J. Funct. Foods. 2016;20:472–485. doi: 10.1016/j.jff.2015.11.027. DOI
Cano-Marquina A., Tarín J.J., Cano A. The impact of coffee on health. Maturitas. 2013;75:7–21. doi: 10.1016/j.maturitas.2013.02.002. PubMed DOI
Nieber K. The impact of coffee on health. Planta Med. 2017;83:1256–1263. doi: 10.1055/s-0043-115007. PubMed DOI
Lai G.Y., Weinstein S.J., Albanes D., Taylor P.R., McGlynn K.A., Virtamo J., Sinha R., Freedman N.D. The association of coffee intake with liver cancer incidence and chronic liver disease mortality in male smokers. Br. J. Cancer. 2013;109:1344–1351. doi: 10.1038/bjc.2013.405. PubMed DOI PMC
Herawati D., Giriwono P.E., Dewi F.N.A., Kashiwagi T., Andarwulan N. Three major compounds showing significant antioxidative, α-glucosidase inhibition, and antiglycation activities in Robusta coffee brew. Int. J. Food Prop. 2019;22:994–1010. doi: 10.1080/10942912.2019.1622562. DOI
Ohishi T., Fukutomi R., Shoji Y., Goto S., Isemura M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules. 2021;26:453. doi: 10.3390/molecules26020453. PubMed DOI PMC
Pinheiro P.F., Pinheiro C.A., Osório V.M., Pereira L.L. Chemical Constituents of Coffee. In: Louzada Pereira L., Rizzo Moreira T., editors. Quality Determinants in Coffee Production. Springer; Cham, Switzerland: 2021. pp. 209–254. (Food Engineering Series). DOI
Alcantara G.M.R.N., Dresch D., Melchert W.R. Use of non-volatile compounds for the classification of specialty and traditional Brazilian coffees using principal component analysis. Food Chem. 2021;360:130088. doi: 10.1016/j.foodchem.2021.130088. PubMed DOI
Parliment T.H., Ho C.-T., Schieberle P., editors. Caffeinated Beverages: Health Benefits, Physiological Effects and Chemistry. 1st ed. American Chemical Society; Washington, DC, USA: 2000.
De Luca S., De Filippis M., Bucci R., Magrì A.D., Magrì A.L., Marini F. Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchem. J. 2016;129:348–361. doi: 10.1016/j.microc.2016.07.021. DOI
Flament I. Coffee Flavor Chemistry. 1st ed. John Wiley & Sons; New York, NY, USA: 2001.
Ishwarya S.P., Nisha P. Unraveling the science of coffee foam—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021;61:1704–1724. doi: 10.1080/10408398.2020.1765136. PubMed DOI
Herawati D., Giriwono P.E., Dewi F.N.A., Kashiwagi T., Andarwulan N. Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food Sci. Biotechnol. 2019;28:7–14. doi: 10.1007/s10068-018-0442-x. PubMed DOI PMC
Coelho C., Ribeiro M., Cruz A.C.S., Domingues M.R.M., Coimbra M.A., Bunzel M., Nunes F.M. Nature of phenolic compounds in coffee melanoidins. J. Agric. Food Chem. 2014;62:7843–7853. doi: 10.1021/jf501510d. PubMed DOI
Gniechwitz D., Reichardt N., Ralph J., Blaut M., Steinhart H., Bunzel M. Isolation and characterisation of a coffee melanoidin fraction. J. Sci. Food Agric. 2008;88:2153–2160. doi: 10.1002/jsfa.3327. PubMed DOI
Murkovic M., Bornik M.-A. Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol. Nutr. Food Res. 2007;51:390–394. doi: 10.1002/mnfr.200600251. PubMed DOI
Murkovic M., Pichler N. Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol. Nutr. Food Res. 2006;50:842–846. doi: 10.1002/mnfr.200500262. PubMed DOI
Sunarharum W.B., Williams D.J., Smyth H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014;62:315–325. doi: 10.1016/j.foodres.2014.02.030. DOI
Barra G.M.J. The Coffee Quality Program in Brazil. In: de Almeida L.F., Spers E.E., editors. Coffee Consumption and Industry Strategies in Brazil. Woodhead Publishing; Sawston, UK: 2020. pp. 65–90. (Woodhead Publishing Series in Consumer Sci & Strat Market). DOI
Dos Santos H.D., Boffo E.F. Coffee beyond the cup: Analytical techniques used in chemical composition research—A review. Eur. Food Res. Technol. 2021;247:749–775. doi: 10.1007/s00217-020-03679-6. DOI
Monteiro P.I., Santos J.S., Rodionova O.Y., Pomerantsev A., Chaves E.S., Rosso N.D., Granato D. Chemometric authentication of Brazilian coffees based on chemical profiling. J. Food Sci. 2019;84:3099–3108. doi: 10.1111/1750-3841.14815. PubMed DOI
De Carvalho Martins V., de Oliveira Godoy R.L., Gouvêa A.C.M.S., de Araujo Santiago M.C.P., Borguini R.G., de Oliveira Braga E.C., Pacheco S., do Nascimento L.D.S.D.M. Fraud investigation in commercial coffee by chromatography. Food Qual. Saf. 2018;2:121–133. doi: 10.1093/fqsafe/fyy017. DOI
Alves R.C., Casal S., Alves M.R., Oliveira M.B. Discrimination between Arabica and robusta coffee species on the basis of their tocopherol profiles. Food Chem. 2009;114:295–299. doi: 10.1016/j.foodchem.2008.08.093. PubMed DOI
Antoine J.M.R., Hoo Fung L.A., Grant C.N. Geographic determination of the growing origins of Jamaican and international coffee using instrumental neutron activation analysis and other methods. J. Radioanal. Nucl. Chem. 2016;309:525–534. doi: 10.1007/s10967-015-4666-4. DOI
Barbosa R.M., Batisa B.L., Varrique R.M., Coelho V.A., Campiglia A.D., Barbosa F., Jr. The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Res. Int. 2014;61:246–251. doi: 10.1016/j.foodres.2013.07.060. DOI
Bertrand B., Villarreal D., Laffargue A., Posada H., Lashermes P., Dussert S. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. J. Agric. Food Chem. 2008;56:2273–2280. doi: 10.1021/jf073314f. PubMed DOI
Anderson K.A., Smith B.W. Chemical profiling to differentiate geographic growing origins of coffee. J. Agric. Food Chem. 2002;50:2068–2075. doi: 10.1021/jf011056v. PubMed DOI
Carter J.F. In: Food Forensics: Stable Isotopes as a Guide to Authenticity and Origin. 1st ed. Carter J.F., Chesson L.A., editors. CRC Press; Boca Raton, FL, USA: 2017. pp. 169–173. DOI
Muñiz-Valencia R., Jurado J.M., Ceballos-Magña S.G., Alcázar A., Hernández-Díaz J. Characterization of Mexican coffee according to mineral contents by means of multilayer perceptrons artificial neural networks. J. Food Comp. Anal. 2014;34:7–11. doi: 10.1016/j.jfca.2014.02.003. DOI
Oliveira M., Ramos S., Delerue-Matos C., Morais S. Expresso beverages of pure origin coffee: Mineral characterization, contribution for mineral intake and geographical origin discrimination. Food Chem. 2015;177:330–338. doi: 10.1016/j.foodchem.2015.01.061. PubMed DOI
Mehari B., Redi-Abshiro M., Chandravanshi B.S., Combrinck S., McCrindle R. Characterization of the Cultivation Region of Ethiopian Coffee by Elemental Analysis. Anal. Lett. 2016;49:2474–2489. doi: 10.1080/00032719.2016.1151023. DOI
Valentin J.L., Watling R.J. Provenance establishment of coffee using solution ICP-MS and ICP-AES. Food Chem. 2013;141:98–104. doi: 10.1016/j.foodchem.2013.02.101. PubMed DOI
González A.G., Pablos F., Martín M.J., Leon-Camacho M., Valdenebro M.S. HPLC analysis of tocopherols and triglycerides in coffee and their use as authentication parameters. Food Chem. 2001;73:93–101. doi: 10.1016/S0308-8146(00)00282-X. DOI
Górnaś P., Siger A., Pugajeva I., Czubinski J., Waśkiewicz A., Polewski K. New insights regarding tocopherols in Arabica and Robusta species coffee beans: RP-UPLC-ESI/MSn and NP-HPLC/FLD study. J. Food Compos. Anal. 2014;36:117–123. doi: 10.1016/j.jfca.2014.08.005. DOI
Jham G.N., Winkler J.K., Berhow M.A., Vaughn S.F. γ-Tocopherol as a Marker of Brazilian Coffee (Coffea arabica L.) Adulteration by Corn. J. Agric. Food Chem. 2007;55:5995–5999. doi: 10.1021/jf070967n. PubMed DOI
Mendes G.D.A., de Oliveira M.A.L., Rodarte M.P., de Carvalho dos Anjos V., Bell M.J.V. Origin geographical classification of green coffee beans (Coffea arabica L.) produced in different regions of the Minas Gerais state by FT-MIR and chemometric. Curr. Res. Food Sci. 2022;5:298–305. doi: 10.1016/j.crfs.2022.01.017. PubMed DOI PMC
Cagliani L.R., Pellegrino G., Giugno G., Consonni R. Quantifcation of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Talanta. 2013;106:169–173. doi: 10.1016/j.talanta.2012.12.003. PubMed DOI
Dias R.C.E., Benassi M.D.T. Discrimination between Arabica and Robusta coffees using hydrosoluble compounds: Is the efficiency of the parameters dependent on the roast degree? Beverages. 2015;1:127–139. doi: 10.3390/beverages1030127. DOI
Atlabachew M., Abebe A., Wubieneh T.A., Habtemariam T.Y. Rapid and simultaneous determination of trigonelline, caffeine, and chlorogenic acid in green coffee bean extract. Food Sci. Nutr. 2021;9:5028–5035. doi: 10.1002/fsn3.2456. PubMed DOI PMC
Casal S., Oliveira M.B.P.P., Alves M.R., Ferreira M.A. Discriminate analysis of roasted coffee varieties for trigonelline, nicotinic acid, and caffeine content. J. Agric. Food Chem. 2000;48:3420–3424. doi: 10.1021/jf990702b. PubMed DOI
Fintello C., Forzato C., Gasparini A., Mammi S., Navarini L., Schievano E. NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins. Food Control. 2017;75:62–69. doi: 10.1016/j.foodcont.2016.12.019. DOI
Gunning Y., Defernez M., Watson A.D., Beadman N., Colquhoun I.J., Le Gall G., Philo M., Garwood H., Williamson D., Davis A.P., et al. 16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing. Food Chem. 2018;248:52–60. doi: 10.1016/j.foodchem.2017.12.034. PubMed DOI PMC
Schievano E., Finotello C., de Angelis E., Mammi S., Navarini L. Rapid Authentication of Coffee Blends and Quantification of 16-OMethylcafestol in Roasted Coffee Beans by Nuclear Magnetic Resonance. J. Agric. Food Chem. 2014;62:12309–12314. doi: 10.1021/jf505013d. PubMed DOI
Pauli E.D., Barbieri F., Garcia P.S., Madeira T.B., Acquaro V.R., Scarminio I.S., da Camara C.A.P., Nixdorf S.L. Detection of ground roasted coffee adulteration with roasted soybean and wheat. Food Res. Int. 2014;61:112–119. doi: 10.1016/j.foodres.2014.02.032. DOI
Nogueira T., do Lago C.L. Detection of adulterations in processed coffee with cereals and coffee husks using capillary zone electrophoresis. J. Sep. Sci. 2009;32:3507–3511. doi: 10.1002/jssc.200900357. PubMed DOI
Domingues D.S., Pauli E.D., de Abreu J.E.M., Massura F.W., Cristiano V., Santos M.J., Nixdorf S.L. Detection of roasted and ground coffee Adulteration by HPLC and by amperometric and by post-column derivatization UV-Vis detection. Food Chem. 2014;146:353–362. doi: 10.1016/j.foodchem.2013.09.066. PubMed DOI
Cai T., Ting H., Jin-Lan Z. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling. Food Chem. 2016;190:1046–1049. doi: 10.1016/j.foodchem.2015.06.084. PubMed DOI
Daniel D., Lopes F.S., dos Santos V.B., do Lago C.L. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Food Chem. 2018;243:305–310. doi: 10.1016/j.foodchem.2017.09.140. PubMed DOI
Klikarová J., Řeháková B., Česlová L. Evaluation of regular and decaffeinated (un)roasted coffee beans using HPLC and multivariate statistical methods. J. Food Compos. Anal. 2022;114:104841. doi: 10.1016/j.jfca.2022.104841. DOI
Suktham T., Soliven A., Jones A., Dennis G.R., Shalliker R.A. Information rich chromatographic separations of natural samples: The analysis of antioxidants in coffee using post column derivatisation and the CUPRAC assay on narrow bore reaction flow HPLC columns. Microchem. J. 2020;153:104403. doi: 10.1016/j.microc.2019.104403. DOI
De Luca S., Ciotoli E., Biancolillo A., Bucci R., Magrì A.D., Marini F. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics. Environ. Sci. Pollut. Res. Int. 2018;25:28748–28759. doi: 10.1007/s11356-018-1379-6. PubMed DOI
Mullen W., Nemzer B., Stalmach A., Ali S., Combet E. Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. J. Agric. Food Chem. 2013;61:5298–5309. doi: 10.1021/jf4003126. PubMed DOI
Mehari B., Chandravanshi B.S., Redi-Abshiro M., Combrinck S., McCrindle R., Atlabachew M. Polyphenol contents of green coffee beans from different regions of Ethiopia. Int. J. Food Prop. 2021;24:17–27. doi: 10.1080/10942912.2020.1858866. DOI
Górnaś P., Dwiecki K., Siger A., Tomaszewska-Gras J., Michalak M., Polewski K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016;242:641–653. doi: 10.1007/s00217-015-2572-1. DOI
Alonso-Salces R.M., Serra F., Reniero F., Héberger K. Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. J. Agric. Food Chem. 2009;57:4224–4235. doi: 10.1021/jf8037117. PubMed DOI
Ahmad I., Syakfanaya A.M., Azminah A., Saputri F.C., Mun’im A. Optimization of betaine-sorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans. Heliyon. 2021;7:e07702. doi: 10.1016/j.heliyon.2021.e07702. PubMed DOI PMC
Casal S., Alves M.R., Mendes E., Oliveira M.B.P.P., Ferreira M.A. Discrimination between Arabica and Robusta coffee species on the basis of their amino acid enantiomers. J. Agric. Food Chem. 2003;51:6495–6501. doi: 10.1021/jf034354w. PubMed DOI
Martín M.J., Pablos F., Gonzalez A.G., Valdenebro M.S., Leon-Camacho M. Fatty acid profiles as discriminant parameters for coffee varieties differentiation. Talanta. 2001;54:291–297. doi: 10.1016/S0039-9140(00)00647-0. PubMed DOI
Rui Alves M., Casal S., Oliveira M.B.P.P., Ferreira M.A. Contribution of FA profile obtained by high-resolution GC/chemometric techniques to the authenticity of green and roasted coffee varieties. J. Am. Oil Chem. Soc. 2003;80:511–517. doi: 10.1007/s11746-003-0730-0. DOI
Romano R., Santini A., Le Grottaglie L., Manzo N., Visconti A., Ritieni A. Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. J. Food Comp. Anal. 2014;35:1–9. doi: 10.1016/j.jfca.2014.04.001. DOI
European Commission Knowledge Centre for Food Fraud and Quality. [(accessed on 20 June 2022)]; Available online: https://knowledge4policy.ec.europa.eu/food-fraud-quality/topic/food-fraud_en.
De Lange E. Draft Report on the Food Crisis, Fraud in the Food Chain and Control Thereof (2013/2091 (INI)) The European Parliament, Committee on the Environment, Public Health and Food Safety; Brussels, Belgium: 2013. [(accessed on 20 June 2022)]. Available online: https://www.europarl.europa.eu/doceo/document/ENVI-PR-519759_EN.pdf?redirect.
Combes M.C., Joët T., Lashermes P. Development of a rapid and efficient DNA-based method to detect and quantify adulterations in coffee (Arabica versus Robusta) Food Control. 2018;88:198–206. doi: 10.1016/j.foodcont.2018.01.014. DOI
Monakhova Y.B., Ruge W., Kuballa T., Ilse M., Winkelmann O., Diehl B., Thomas F., Lachenmeier D.W. Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. Food Chem. 2015;182:178–184. doi: 10.1016/j.foodchem.2015.02.132. PubMed DOI
Casal S., Mendes E., Alves M.R., Alves R.C., Beatriz M., Oliveira P.P., Ferreira M.A. Free and conjugated biogenic amines in green and roasted coffee beans. J. Agric. Food Chem. 2004;52:6188–6192. doi: 10.1021/jf049509u. PubMed DOI
Martín M.J., Pablos F., González A.G. Discrimination between Arabica and Robusta green coffee varieties according to their chemical composition. Talanta. 1998;46:1259–1264. doi: 10.1016/S0039-9140(97)00409-8. PubMed DOI
Consonni R., Cagliani L.R., Cogliati C. NMR based geographical characterization of roasted coffee. Talanta. 2012;88:420–426. doi: 10.1016/j.talanta.2011.11.010. PubMed DOI
Marquetti I., Link J.V., Lemes A.L.G., dos Santos Scholz M.B., Valderrama P., Bona E. Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of Arabica coffee. Comput. Electron. Agric. 2016;121:313–319. doi: 10.1016/j.compag.2015.12.018. DOI
Yener S., Romano A., Cappellin L., Granitto P.M., Aprea E., Navarini L., Märk T.D., Gasperi F., Biasioli F. Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS. Food Res. Int. 2015;69:235–243. doi: 10.1016/j.foodres.2014.12.046. DOI
Uncu A.T., Uncu A.O. Plastid trnH-psbA intergenic spacer serves as a PCRbased marker to detect common grain adulterants of coffee (Coffea arabica L.) Food Control. 2018;91:32–39. doi: 10.1016/j.foodcont.2018.03.029. DOI
De Morais T.C.B., Rodrigues D.R., de Carvalho Polari Souto U.T., Lemos S.G. A Simple voltammetric electronic tongue for the analysis of coffee adulterations. Food Chem. 2019;273:31–38. doi: 10.1016/j.foodchem.2018.04.136. PubMed DOI
Ferreira T., Farah A., Oliveira T.C., Lima I.S., Vitório F., Oliveira E.M.M. Using real-time PCR as a tool for monitoring the authenticity of commercial coffees. Food Chem. 2016;199:433–438. doi: 10.1016/j.foodchem.2015.12.045. PubMed DOI
Toci A.T., Farah A., Pezza H.R., Pezza L. Coffee adulteration: More than two decades of research. Crit. Rev. Anal. Chem. 2016;46:83–92. doi: 10.1080/10408347.2014.966185. PubMed DOI
Sezer B., Apaydin H., Bilge G., Boyaci I.H. Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chem. 2018;264:142–148. doi: 10.1016/j.foodchem.2018.05.037. PubMed DOI
Arrieta A.A., Arrieta P.L., Mendoza J.M. Analysis of coffee adulterated with roasted corn and roasted soybean using voltammetric electronic tongue. Acta Sci. Pol. Technol. Aliment. 2019;18:35–41. PubMed
Toci A.T., de Moura Ribeiro M.V., de Toledo P.R.A.B., Boralle N., Pezza H.R., Pezza L. Fingerprint and authenticity roasted coffees by 1H-NMR: The Brazilian coffee case. Food Sci. Biotechnol. 2018;27:19–26. doi: 10.1007/s10068-017-0243-7. PubMed DOI PMC
Burns D.T., Walker M.J. Critical Review of Analytical and Bioanalytical Verification of the Authenticity of Coffee. J. AOAC Int. 2020;103:283–294. doi: 10.5740/jaoacint.18-0392. PubMed DOI
Tolessa K., Rademaker M., Baets B.D., Boeckx P. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Talanta. 2016;150:367–374. doi: 10.1016/j.talanta.2015.12.039. PubMed DOI
Bertone E., Venturelo A., Giraudo A., Pellegrino G., Geobaldo F. Simultaneous determination by NIR spectroscopy of the roasting degree and Arabic/Robusta ratio in roasted and ground coffee. Food Control. 2016;59:683–689. doi: 10.1016/j.foodcont.2015.06.055. DOI
Wermelinger T., D’Ambrosio L., Klopprogge B., Yeretzian C. Quantification of the Robusta fraction in a coffee blend via Raman spectroscopy: Proof of principle. J. Agric. Food Chem. 2011;59:9074–9079. doi: 10.1021/jf201918a. PubMed DOI
Mees C., Souard F., Delporte C., Deconinck E., Stoffelen P., Stévigny C., Kauffmann J.-M., De Braekeleer K. Identification of coffee leaves using FT-NIR spectroscopy and SIMCA. Talanta. 2018;177:4–11. doi: 10.1016/j.talanta.2017.09.056. PubMed DOI
Martellossi C., Taylor E.J., Lee D., Graziosi G., Donni P. DNA Extraction and Analysis from Processed Coffee Beans. J. Agric. Food Chem. 2005;53:8432–8438. doi: 10.1021/jf050776p. PubMed DOI
Wang X., Lim L.-T., Fu Y. Review of analytical methods to detect adulteration in coffee. J. AOAC Int. 2020;103:295–305. doi: 10.1093/jaocint/qsz019. PubMed DOI
Cheah W.L., Fang M. HPLC-based chemometric analysis for coffee adulteration. Foods. 2020;9:880. doi: 10.3390/foods9070880. PubMed DOI PMC
Silva A.R., Santos J.R., Almeida P.J., Rodrigues J.A. Screening of Antioxidant Compounds in Green Coffee by Low Pressure Chromatography with Amperometric Detection. Food Anal. Methods. 2021;14:2175–2185. doi: 10.1007/s12161-021-02037-w. DOI
Putri S.P., Irifune T., Fukusaki E. GC/MS based metabolite profiling of Indonesian specialty coffee from different species and geographical origin. Metabolomics. 2019;15:1–11. doi: 10.1007/s11306-019-1591-5. PubMed DOI
Blinova L., Sirotiale M., Bartosova A., Soldan M. Utilization of Waste from Coffee Production. Volume 25. Slovak University of Technology; Bratislava, Slovakia: 2017. pp. 91–101. Research Papers Faculty of Material Science and Technology Slovak University of Technology in Trnava.
Abbasi-Parizad P., De Nisi P., Scaglia B., Scarafoni A., Pilu S., Adani F. Recovery of phenolic compounds from agro-industrial by-products: Evaluating antiradical activities and immunomodulatory properties. Food Bioprod. Process. 2021;127:338–348. doi: 10.1016/j.fbp.2021.03.015. DOI
Okur I., Soyler B., Sezer P., Oztop M.H., Alpas H. Improving the Recovery of Phenolic Compounds from Spent Coffee Grounds (SCG) by Environmentally Friendly Extraction Techniques. Molecules. 2021;26:613. doi: 10.3390/molecules26030613. PubMed DOI PMC
Spadi A., Angeloni G., Guerrini L., Corti F., Parenti A., Innocenti M., Bellumori M., Masella P. Hydrodistillation of Coffee By-products to Recover of Bioactive Compounds: The Spent Coffee Ground and Coffee Silvers Skin Case-study. Chem. Eng. Trans. 2021;87:313–318.
Nzekoue F.K., Khamitova G., Angeloni S., Sempere A.N., Tao J., Maggi F., Xiao J., Sagratini G., Vittori S., Caprioli G. Spent coffee grounds: A potential commercial source of phytosterols. Food Chem. 2020;325:126836. doi: 10.1016/j.foodchem.2020.126836. PubMed DOI
Panusa A., Zuoro A., Lavecchia R., Marrosa G., Petrucci R. Recovery of natural antioxidant from spent coffee ground. J. Agric. Food Chem. 2013;61:4162–4168. doi: 10.1021/jf4005719. PubMed DOI
Manasa V., Padmanabhan A., Anu Appaiah K.A. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Manag. 2021;120:762–771. doi: 10.1016/j.wasman.2020.10.045. PubMed DOI
Da Silveira J.S., Mertz C., Morel G., Lacour S., Belleville M.-P., Durand N., Dornier M. Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DADMS/MS. Food Chem. 2020;319:126600. doi: 10.1016/j.foodchem.2020.126600. PubMed DOI
Nzekoue F.K., Angeloni S., Navarini L., Angeloni C., Freschi M., Hrelia S., Vitali L.A., Sagratini G., Vittori S., Caprioli G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020;133:109128. doi: 10.1016/j.foodres.2020.109128. PubMed DOI
Souard F., Delporte C., Stofelen P., Thévenot E.A., Noret N., Dauvergne B., Kaufmann J.-M., Van Antwerpen P., Stévigny C. Metabolomics fingerprint of coffee species determined by untargeted-profling study using LC-HRMS. Food Chem. 2018;245:603–612. doi: 10.1016/j.foodchem.2017.10.022. PubMed DOI
Čurlej J., Bobková A., Zajác P., Čapla J., Hleba L. Sights to Authentication and Adulteration of the Coffee in Global Aspect. J. Microbiol. Biotechnol. Food Sci. 2021;10:e4793. doi: 10.15414/jmbfs.4793. DOI
Cheserek J.J., Ngugi K., Muthomi J.W., Omondi C.O., Ezekiel K.N. Green bean biochemical attributes of Arabusta coffee hybrids from Kenya using HPLC and soxhlet extraction methods. Aust. J. Crop Sci. 2021;15:201–208. doi: 10.21475/ajcs.21.15.02.p2581. DOI
Montenegro J., dos Santos L.S., de Souza R.G.G., Lima L.G.B., Mattos D.S., Viana B.P.P.B., da Fonseca Bastos A.C.S., Muzzi L., Conte-Júnior C.A., Gimba E.R.P., et al. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE) Food Res. Int. 2021;140:110014. doi: 10.1016/j.foodres.2020.110014. PubMed DOI
Demianová A., Bobková A., Jurčaga L., Bobko M., Belej Ľ., Árvay J. Determination of Geographical Origin of Green and Roasted Coffee Based on Selected Chemical Parameters. J. Microbiol. Biotechnol. Food Sci. 2021;10:706–710. doi: 10.15414/jmbfs.2021.10.4.706-710. DOI
Angelino D., Tassotti M., Brighenti F., Del Rio D., Mena P. Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees. Sci. Rep. 2018;8:17874. doi: 10.1038/s41598-018-36291-6. PubMed DOI PMC
Schouten M.A., Tappi S., Angeloni S., Cortese M., Caprioli G., Vittori S., Romani S. Acrylamide formation and antioxidant activity in coffee during roasting—A systematic study. Food Chem. 2021;343:128514. doi: 10.1016/j.foodchem.2020.128514. PubMed DOI
Miłek M., Młodecki Ł., Dżugan M. Caffeine Content and Antioxidant Activity of Various Brews of Specialty Grade Coffee. Acta Sci. Pol. Technol. Aliment. 2021;20:179–188. PubMed
Gutiérrez Ortiz A.L., Berti F., Solano Sánchez W., Navarini L., Colomban S., Crisafulli P., Forzato C. Distribution of p-coumaroylquinic acids in commercial Coffea spp. of different geographical origin and in other wild coffee species. Food Chem. 2019;286:459–466. doi: 10.1016/j.foodchem.2019.02.039. PubMed DOI
Macheiner L., Schmidt A., Mayer H.K. A novel basis for monitoring the coffee roasting process: Isomerization reactions of 3-caffeoylquinic and 4-caffeoylquinic acids. LWT. 2021;152:112343. doi: 10.1016/j.lwt.2021.112343. DOI
Faria W.C.S., Petry F.C., De Barros W.M., de Melo Moura W., da Conceição E.C., Bragagnolo N. Effect of solid–liquid extraction on the bioactive content and reducing capacity of the green coffee fruit. Sep. Sci. Technol. 2020;56:1211–1224. doi: 10.1080/01496395.2020.1774607. DOI
Brzezicha J., Błazejewicz D., Brzezinska J., Grembecka M. Green coffee VS dietary supplements: A comparative analysis of bioactive compounds and antioxidant activity. Food Chem. Toxicol. 2021;155:112377. doi: 10.1016/j.fct.2021.112377. PubMed DOI
Budryn G., Nebesny E., Podsędek A., Żyżelewicz D., Materska M., Jankowski S., Janda B. Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. Eur. Food Res. Technol. 2009;228:913–922. doi: 10.1007/s00217-008-1004-x. DOI
Ludwig I.A., Sanchez L., Caemmerer B., Kroh L.W., De Peña M.P., Cid C. Extraction of coffee antioxidants: Impact of brewing time and method. Food Res. Int. 2012;48:57–64. doi: 10.1016/j.foodres.2012.02.023. DOI
Rothwell J., Loftfeld E., Wedekind R., Freedman N., Kambanis C., Scalbert A., Sinha R. A metabolomic study of the variability of the chemical composition of commonly consumed coffee brews. Metabolites. 2019;9:17. doi: 10.3390/metabo9010017. PubMed DOI PMC
Preedy V.R., editor. Coffee in Health and Disease Prevention. Academic Press; Cambridge, MA, USA: 2015. pp. 1033–1046. DOI
Núñez N., Saurina J., Núñez O. Authenticity Assessment and Fraud Quantitation of Coffee Adulterated with Chicory, Barley, and Flours by Untargeted HPLC-UV-FLD Fingerprinting and Chemometrics. Foods. 2021;10:840. doi: 10.3390/foods10040840. PubMed DOI PMC
Iwasa K., Setoyama D., Shimizu H., Seta H., Fujimura Y., Miura D., Wariishi H., Nagai C., Nakahara K. Identification of 3-methylbutanoyl glycosides in green Coffea arabica beans as causative determinants for the quality of coffee flavors. J. Agric. Food Chem. 2015;63:3742–3751. doi: 10.1021/jf5054047. PubMed DOI
Sittipod S., Schwartz E., Paravisini L., Peterson D.G. Identification of flavor modulating compounds that positively impact coffee quality. Food Chem. 2019;301:125250. doi: 10.1016/j.foodchem.2019.125250. PubMed DOI
Xu L., Lao F., Xu Z., Wang X., Chen F., Liao X., Chen A., Yang S. Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods. Food Chem. 2019;286:106–112. doi: 10.1016/j.foodchem.2019.01.154. PubMed DOI
Núñez N., Martínez C., Saurina J., Núñez O. High-performance liquid chromatography with fluorescence detection fingerprints as chemical descriptors to authenticate the origin, variety and roasting degree of coffee by multivariate chemometric methods. J. Sci. Food Agric. 2021;101:65–73. doi: 10.1002/jsfa.10615. PubMed DOI
Núñez N., Saurina J., Núñez O. Non-targeted HPLC-FLD fingerprinting for the detection and quantitation of adulterated coffee samples by chemometrics. Food Control. 2021;124:107912. doi: 10.1016/j.foodcont.2021.107912. DOI
Núñez N., Pons J., Saurina J., Núñez O. Non-targeted high-performance liquid chromatography with ultraviolet and fluorescence detection fingerprinting for the classification, authentication, and fraud quantitation of instant coffee and chicory by multivariate chemometric methods. LWT. 2021;147:111646. doi: 10.1016/j.lwt.2021.111646. DOI
Viapiana A., Maggi F., Kaszuba M., Konieczynski P., Wesolowski M. Quality assessment of Coffea arabica commercial samples. Nat. Prod. Res. 2020;34:3154–3157. doi: 10.1080/14786419.2019.1610750. PubMed DOI
Moreira I., Scarminio I.S. Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints. Talanta. 2013;107:416–422. doi: 10.1016/j.talanta.2013.01.053. PubMed DOI
Guizellini F.C., Marcheafave G.G., Rakocevic M., Bruns R.E., Scarminio I.S., Soares P.K. PARAFAC HPLC-DAD metabolomic fingerprint investigation of reference and crossed coffees. Food Res. Int. 2018;113:9–17. doi: 10.1016/j.foodres.2018.06.070. PubMed DOI
Abdelwareth A., Zayed A., Farag M.A. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chem. 2021;349:129162. doi: 10.1016/j.foodchem.2021.129162. PubMed DOI
Marcheafave G.G., Pauli E.D., Tormena C.D., Ortiz M.C.V., de Almeida A.G., Rakocevic M., Bruns R.E., Scarminio I.S. Factorial design fingerprint discrimination of Coffea arabica beans under elevated carbon dioxide and limited water conditions. Talanta. 2020;209:120591. doi: 10.1016/j.talanta.2019.120591. PubMed DOI