Influence of the Nature and Structure of Polyelectrolyte Cryogels on the Polymerization of (3,4-Ethylenedioxythiophene) and Spectroscopic Characterization of the Composites

. 2022 Nov 04 ; 27 (21) : . [epub] 20221104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36364406

Grantová podpora
122012000450-5 Institutional

Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.

Zobrazit více v PubMed

Bendrea A.-D., Cianga L., Cianga I. Review paper: Progress in the Field of Conducting Polymers for Tissue Engineering Applications. J. Biomater. Appl. 2011;26:3–84. doi: 10.1177/0885328211402704. PubMed DOI

Jordan R.S., Frye J., Hernandez V., Prado I., Giglio A., Abbasizadeh N., Flores-Martinez M., Shirzad K., Xu B., Hill I.M., et al. 3D printed architected conducting polymer hydrogels. J. Mater. Chem. B. 2021;9:7258–7270. doi: 10.1039/D1TB00877C. PubMed DOI

Zhao F., Shi Y., Pan L., Yu G. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Acc. Chem. Res. 2017;50:1734–1743. doi: 10.1021/acs.accounts.7b00191. PubMed DOI

Wijsboom Y.H., Patra A., Zade S.S., Sheynin Y., Li M., Shimon L.J.W., Bendikov M. Controlling Rigidity and Planarity in Conjugated Polymers: Poly(3,4-ethylenedithioselenophene) Angew. Chem. Int. Ed. 2009;48:5443–5447. doi: 10.1002/anie.200901231. PubMed DOI

Asplund M., Thaning E., Lundberg J., Sandberg-Nordqvist A.C., Kostyszyn B., Inganäs O., von Holst H. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 2009;4:045009. doi: 10.1088/1748-6041/4/4/045009. PubMed DOI

Hosseini H., Rezaei S.J.T., Rahmani P., Sharifi R., Nabid M.R., Bagheri A. Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly(3,4-ethylenedioxythiophene) nanofibers. Sens. Actuators B Chem. 2014;195:85–91. doi: 10.1016/j.snb.2014.01.015. DOI

Wang S., Guan S., Wang J., Liu H., Liu T., Ma X., Cui Z. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. J. Biosci. Bioeng. 2017;123:116–125. doi: 10.1016/j.jbiosc.2016.07.010. PubMed DOI

Sakunpongpitiporn P., Phasuksom K., Paradee N., Sirivat A. Facile synthesis of highly conductive PEDOT:PSS via surfactant templates. RSC Adv. 2019;9:6363–6378. doi: 10.1039/C8RA08801B. PubMed DOI PMC

Kubarkov A.V., Lipovskikh S.A., Pyshkina O.A., Karpushkin E.A., Stevenson K.J., Sergeyev V.G. Preparation and morphology characterization of core-shell water-dispersible polystyrene/poly(3,4-ethylenedioxythiophene) microparticles. Colloid Polym. Sci. 2018;296:737–744. doi: 10.1007/s00396-018-4294-y. DOI

Tomšík E., Laishevkina S., Svoboda J., Gunar K., Hromádková J., Shevchenko N. Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. coli Detection. Sensors. 2022;22:2784. doi: 10.3390/s22072784. PubMed DOI PMC

Kubarkov A.V., Pyshkina O.A., Karpushkin E.A., Stevenson K.J., Sergeyev V.G. Electrically conducting polymeric microspheres comprised of sulfonated polystyrene cores coated with poly(3,4-ethylenedioxythiophene) Colloid Polym. Sci. 2017;295:1049–1058. doi: 10.1007/s00396-017-4101-1. DOI

Lee J.J., Lee S.H., Kim F.S., Choi H.H., Kim J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Org. Electron. 2015;26:191–199. doi: 10.1016/j.orgel.2015.07.022. DOI

Guo B., Ma Z., Pan L., Shi Y. Properties of conductive polymer hydrogels and their application in sensors. J. Polym. Sci. Part B Polym. Phys. 2019;57:1606–1621. doi: 10.1002/polb.24899. DOI

Zhai D., Liu B., Shi Y., Pan L., Wang Y., Li W., Zhang R., Yu G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano. 2013;7:3540–3546. doi: 10.1021/nn400482d. PubMed DOI

Kaur G., Adhikari R., Cass P., Bown M., Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5:37553–37567. doi: 10.1039/C5RA01851J. DOI

Green R., Baek S., Poole-Warren L., Martens P.J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 2010;11:014107. doi: 10.1088/1468-6996/11/1/014107. PubMed DOI PMC

Guiseppi-Elie A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI

Shevchenko N., Tomšík E., Laishevkina S., Iakobson O., Pankova G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties. Soft Matter. 2021;17:2290–2301. doi: 10.1039/D0SM02147D. PubMed DOI

Park S., Yang G., Madduri N., Abidian M.R., Majd S. Hydrogel-mediated direct patterning of conducting polymer films with multiple surface chemistries. Adv. Mater. 2014;26:2782–2787. doi: 10.1002/adma.201306093. PubMed DOI PMC

Gilmore K., Hodgson A., Luan B., Small C., Wallace G. Preparation of hydrogel/conducting polymer composites. Polym. Gels Netw. 1994;2:135–143. doi: 10.1016/0966-7822(94)90032-9. DOI

Zhang X., Li C., Luo Y. Aligned/Unaligned Conducting Polymer Cryogels with Three-Dimensional Macroporous Architectures from Ice-Segregation-Induced Self-Assembly of PEDOT-PSS. Langmuir. 2011;27:1915–1923. doi: 10.1021/la1044333. PubMed DOI

Gutiérrez M.C., Ferrer M.L., del Monte F. Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chem. Mater. 2008;20:634–648. doi: 10.1021/cm702028z. DOI

Mukai S.R., Nishihara H., Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chem. Commun. 2004;7:874–875. doi: 10.1039/b316597c. PubMed DOI

Gutiérrez M.C., García-Carvajal Z.Y., Jobbágy M., Rubio F., Yuste L., Rojo F., Ferrer M.L., del Monte F. Poly(vinyl alcohol) Scaffolds with Tailored Morphologies for Drug Delivery and Controlled Release. Adv. Funct. Mater. 2007;17:3505–3513. doi: 10.1002/adfm.200700093. DOI

Nagamine K., Kawashima T., Sekine S., Ido Y., Kanzaki M., Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2010;11:513–517. doi: 10.1039/C0LC00364F. PubMed DOI

Paradee N., Sirivat A. Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology. J. Phys. Chem. B. 2014;118:9263–9271. doi: 10.1021/jp502674f. PubMed DOI

Lu Y., Li Y., Pan J., Wei P., Liu N., Wu B., Cheng J., Lu C., Wang L. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials. 2012;33:378–394. doi: 10.1016/j.biomaterials.2011.09.083. PubMed DOI

Sasaki M., Karikkineth B.C., Nagamine K., Kaji H., Torimitsu K., Nishizawa M. Highly Conductive Stretchable and Biocompatible Electrode-Hydrogel Hybrids for Advanced Tissue Engineering. Adv. Health Mater. 2014;3:1919–1927. doi: 10.1002/adhm.201400209. PubMed DOI

Naficy S., Razal J.M., Spinks G.M., Wallace G.G., Whitten P.G. Electrically Conductive, Tough Hydrogels with pH Sensitivity. Chem. Mater. 2012;24:3425–3433. doi: 10.1021/cm301666w. DOI

Pinna A., Casula M.F., Pilia L., Cappai A., Melis C., Ricci P.C., Carbonaro C.M. Driving the polymerization of PEDOT:PSS by means of a nanoporous template: Effects on the structure. Polymer. 2019;185:121941. doi: 10.1016/j.polymer.2019.121941. DOI

Balasubramanian A., Ku T.-C., Shih H.-P., Suman A., Lin H.-J., Shih T.-W., Han C.-C. Chain-growth cationic polymerization of 2-halogenated thiophenes promoted by Brønsted acids. Polym. Chem. 2014;5:5928–5941. doi: 10.1039/C4PY00521J. DOI

Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L. Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. Macromol. Chem. Phys. 2020;221:2000219. doi: 10.1002/macp.202000219. DOI

Sener G., Krebs M.D. Zwitterionic cryogels for sustained release of proteins. RSC Adv. 2016;6:29608–29611. doi: 10.1039/C6RA03009B. DOI

Laishevkina S., Skurkis Y., Shevchenko N. Preparation and properties of cryogels based on poly(sulfopropyl methacrylate) or poly(sulfobetaine methacrylate) with controlled swelling. J. Sol-Gel Sci. Technol. 2022;102:343–356. doi: 10.1007/s10971-022-05770-8. DOI

Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E. Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules. 2021;54:10321–10330. doi: 10.1021/acs.macromol.1c01975. DOI

Nie S., Li Z., Yao Y., Jin Y. Progress in Synthesis of Conductive Polymer Poly(3,4-Ethylenedioxythiophene) Front. Chem. 2021;9:803509. doi: 10.3389/fchem.2021.803509. PubMed DOI PMC

Sears W., MacKinnon C., Kraft T. The effect of chain length on the dielectric and optical properties of oligothiophenes. Synth. Met. 2011;161:1566–1574. doi: 10.1016/j.synthmet.2011.05.020. DOI

Greczynski G., Kugler T., Keil M., Osikowicz W., Fahlman M., Salaneck W. Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: A mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 2001;121:1–17. doi: 10.1016/S0368-2048(01)00323-1. DOI

Men’Shikova A.Y., Inkin K.S., Evseeva T.G., Skurkis Y.O., Shabsel’S B.M., Shevchenko N., Ivanchev S. Bioligand carriers based on methyl methacrylate copolymers with N-vinylformamide or glycidyl methacrylate. Colloid J. 2011;73:76–82. doi: 10.1134/S1061933X1101011X. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...