Influence of the Nature and Structure of Polyelectrolyte Cryogels on the Polymerization of (3,4-Ethylenedioxythiophene) and Spectroscopic Characterization of the Composites
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
122012000450-5
Institutional
PubMed
36364406
PubMed Central
PMC9659225
DOI
10.3390/molecules27217576
PII: molecules27217576
Knihovny.cz E-zdroje
- Klíčová slova
- composite PEDOT@polyelectrolyte, electrochemical impedance spectroscopy, polyelectrolyte gels,
- MeSH
- kryogely * chemie MeSH
- methakryláty * chemie MeSH
- polyelektrolyty MeSH
- polymerizace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3,4-ethylenedioxythiophene MeSH Prohlížeč
- kryogely * MeSH
- methakryláty * MeSH
- polyelektrolyty MeSH
- sulfobetaine MeSH Prohlížeč
Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.
Zobrazit více v PubMed
Bendrea A.-D., Cianga L., Cianga I. Review paper: Progress in the Field of Conducting Polymers for Tissue Engineering Applications. J. Biomater. Appl. 2011;26:3–84. doi: 10.1177/0885328211402704. PubMed DOI
Jordan R.S., Frye J., Hernandez V., Prado I., Giglio A., Abbasizadeh N., Flores-Martinez M., Shirzad K., Xu B., Hill I.M., et al. 3D printed architected conducting polymer hydrogels. J. Mater. Chem. B. 2021;9:7258–7270. doi: 10.1039/D1TB00877C. PubMed DOI
Zhao F., Shi Y., Pan L., Yu G. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Acc. Chem. Res. 2017;50:1734–1743. doi: 10.1021/acs.accounts.7b00191. PubMed DOI
Wijsboom Y.H., Patra A., Zade S.S., Sheynin Y., Li M., Shimon L.J.W., Bendikov M. Controlling Rigidity and Planarity in Conjugated Polymers: Poly(3,4-ethylenedithioselenophene) Angew. Chem. Int. Ed. 2009;48:5443–5447. doi: 10.1002/anie.200901231. PubMed DOI
Asplund M., Thaning E., Lundberg J., Sandberg-Nordqvist A.C., Kostyszyn B., Inganäs O., von Holst H. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 2009;4:045009. doi: 10.1088/1748-6041/4/4/045009. PubMed DOI
Hosseini H., Rezaei S.J.T., Rahmani P., Sharifi R., Nabid M.R., Bagheri A. Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly(3,4-ethylenedioxythiophene) nanofibers. Sens. Actuators B Chem. 2014;195:85–91. doi: 10.1016/j.snb.2014.01.015. DOI
Wang S., Guan S., Wang J., Liu H., Liu T., Ma X., Cui Z. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. J. Biosci. Bioeng. 2017;123:116–125. doi: 10.1016/j.jbiosc.2016.07.010. PubMed DOI
Sakunpongpitiporn P., Phasuksom K., Paradee N., Sirivat A. Facile synthesis of highly conductive PEDOT:PSS via surfactant templates. RSC Adv. 2019;9:6363–6378. doi: 10.1039/C8RA08801B. PubMed DOI PMC
Kubarkov A.V., Lipovskikh S.A., Pyshkina O.A., Karpushkin E.A., Stevenson K.J., Sergeyev V.G. Preparation and morphology characterization of core-shell water-dispersible polystyrene/poly(3,4-ethylenedioxythiophene) microparticles. Colloid Polym. Sci. 2018;296:737–744. doi: 10.1007/s00396-018-4294-y. DOI
Tomšík E., Laishevkina S., Svoboda J., Gunar K., Hromádková J., Shevchenko N. Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. coli Detection. Sensors. 2022;22:2784. doi: 10.3390/s22072784. PubMed DOI PMC
Kubarkov A.V., Pyshkina O.A., Karpushkin E.A., Stevenson K.J., Sergeyev V.G. Electrically conducting polymeric microspheres comprised of sulfonated polystyrene cores coated with poly(3,4-ethylenedioxythiophene) Colloid Polym. Sci. 2017;295:1049–1058. doi: 10.1007/s00396-017-4101-1. DOI
Lee J.J., Lee S.H., Kim F.S., Choi H.H., Kim J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Org. Electron. 2015;26:191–199. doi: 10.1016/j.orgel.2015.07.022. DOI
Guo B., Ma Z., Pan L., Shi Y. Properties of conductive polymer hydrogels and their application in sensors. J. Polym. Sci. Part B Polym. Phys. 2019;57:1606–1621. doi: 10.1002/polb.24899. DOI
Zhai D., Liu B., Shi Y., Pan L., Wang Y., Li W., Zhang R., Yu G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano. 2013;7:3540–3546. doi: 10.1021/nn400482d. PubMed DOI
Kaur G., Adhikari R., Cass P., Bown M., Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5:37553–37567. doi: 10.1039/C5RA01851J. DOI
Green R., Baek S., Poole-Warren L., Martens P.J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 2010;11:014107. doi: 10.1088/1468-6996/11/1/014107. PubMed DOI PMC
Guiseppi-Elie A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI
Shevchenko N., Tomšík E., Laishevkina S., Iakobson O., Pankova G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties. Soft Matter. 2021;17:2290–2301. doi: 10.1039/D0SM02147D. PubMed DOI
Park S., Yang G., Madduri N., Abidian M.R., Majd S. Hydrogel-mediated direct patterning of conducting polymer films with multiple surface chemistries. Adv. Mater. 2014;26:2782–2787. doi: 10.1002/adma.201306093. PubMed DOI PMC
Gilmore K., Hodgson A., Luan B., Small C., Wallace G. Preparation of hydrogel/conducting polymer composites. Polym. Gels Netw. 1994;2:135–143. doi: 10.1016/0966-7822(94)90032-9. DOI
Zhang X., Li C., Luo Y. Aligned/Unaligned Conducting Polymer Cryogels with Three-Dimensional Macroporous Architectures from Ice-Segregation-Induced Self-Assembly of PEDOT-PSS. Langmuir. 2011;27:1915–1923. doi: 10.1021/la1044333. PubMed DOI
Gutiérrez M.C., Ferrer M.L., del Monte F. Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chem. Mater. 2008;20:634–648. doi: 10.1021/cm702028z. DOI
Mukai S.R., Nishihara H., Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chem. Commun. 2004;7:874–875. doi: 10.1039/b316597c. PubMed DOI
Gutiérrez M.C., García-Carvajal Z.Y., Jobbágy M., Rubio F., Yuste L., Rojo F., Ferrer M.L., del Monte F. Poly(vinyl alcohol) Scaffolds with Tailored Morphologies for Drug Delivery and Controlled Release. Adv. Funct. Mater. 2007;17:3505–3513. doi: 10.1002/adfm.200700093. DOI
Nagamine K., Kawashima T., Sekine S., Ido Y., Kanzaki M., Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2010;11:513–517. doi: 10.1039/C0LC00364F. PubMed DOI
Paradee N., Sirivat A. Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology. J. Phys. Chem. B. 2014;118:9263–9271. doi: 10.1021/jp502674f. PubMed DOI
Lu Y., Li Y., Pan J., Wei P., Liu N., Wu B., Cheng J., Lu C., Wang L. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials. 2012;33:378–394. doi: 10.1016/j.biomaterials.2011.09.083. PubMed DOI
Sasaki M., Karikkineth B.C., Nagamine K., Kaji H., Torimitsu K., Nishizawa M. Highly Conductive Stretchable and Biocompatible Electrode-Hydrogel Hybrids for Advanced Tissue Engineering. Adv. Health Mater. 2014;3:1919–1927. doi: 10.1002/adhm.201400209. PubMed DOI
Naficy S., Razal J.M., Spinks G.M., Wallace G.G., Whitten P.G. Electrically Conductive, Tough Hydrogels with pH Sensitivity. Chem. Mater. 2012;24:3425–3433. doi: 10.1021/cm301666w. DOI
Pinna A., Casula M.F., Pilia L., Cappai A., Melis C., Ricci P.C., Carbonaro C.M. Driving the polymerization of PEDOT:PSS by means of a nanoporous template: Effects on the structure. Polymer. 2019;185:121941. doi: 10.1016/j.polymer.2019.121941. DOI
Balasubramanian A., Ku T.-C., Shih H.-P., Suman A., Lin H.-J., Shih T.-W., Han C.-C. Chain-growth cationic polymerization of 2-halogenated thiophenes promoted by Brønsted acids. Polym. Chem. 2014;5:5928–5941. doi: 10.1039/C4PY00521J. DOI
Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L. Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. Macromol. Chem. Phys. 2020;221:2000219. doi: 10.1002/macp.202000219. DOI
Sener G., Krebs M.D. Zwitterionic cryogels for sustained release of proteins. RSC Adv. 2016;6:29608–29611. doi: 10.1039/C6RA03009B. DOI
Laishevkina S., Skurkis Y., Shevchenko N. Preparation and properties of cryogels based on poly(sulfopropyl methacrylate) or poly(sulfobetaine methacrylate) with controlled swelling. J. Sol-Gel Sci. Technol. 2022;102:343–356. doi: 10.1007/s10971-022-05770-8. DOI
Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E. Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules. 2021;54:10321–10330. doi: 10.1021/acs.macromol.1c01975. DOI
Nie S., Li Z., Yao Y., Jin Y. Progress in Synthesis of Conductive Polymer Poly(3,4-Ethylenedioxythiophene) Front. Chem. 2021;9:803509. doi: 10.3389/fchem.2021.803509. PubMed DOI PMC
Sears W., MacKinnon C., Kraft T. The effect of chain length on the dielectric and optical properties of oligothiophenes. Synth. Met. 2011;161:1566–1574. doi: 10.1016/j.synthmet.2011.05.020. DOI
Greczynski G., Kugler T., Keil M., Osikowicz W., Fahlman M., Salaneck W. Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: A mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 2001;121:1–17. doi: 10.1016/S0368-2048(01)00323-1. DOI
Men’Shikova A.Y., Inkin K.S., Evseeva T.G., Skurkis Y.O., Shabsel’S B.M., Shevchenko N., Ivanchev S. Bioligand carriers based on methyl methacrylate copolymers with N-vinylformamide or glycidyl methacrylate. Colloid J. 2011;73:76–82. doi: 10.1134/S1061933X1101011X. DOI