The Preparation and Biological Testing of Novel Wound Dressings with an Encapsulated Antibacterial and Antioxidant Substance

. 2022 Oct 29 ; 12 (21) : . [epub] 20221029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36364600

Grantová podpora
FV30086 and FV40189 Ministry of Industry and Trade
RVO 68378050 Czech Academy of Sciences
LM2018126 Czech Centre for Phenogenomics Ministry of Education, Youth and Sports of the Czech Republic

Chronic wounds represent a significant socio-economic problem, and the improvement of their healing is therefore an essential issue. This paper describes the preparation and biological properties of a novel functionalized nanofiber wound dressing consisting of a polycaprolactone nanofiber carrier modified by a drug delivery system, based on the lipid particles formed by 1-tetradecanol and encapsulated gentamicin and tocopherol acetate. The cytotoxicity of extracts was tested using a metabolic activity assay, and the antibacterial properties of the extracts were tested in vitro on the bacterial strains Staphylococcus aureus and Pseudomonas aeruginosa. The effect of the wound dressing on chronic wound healing was subsequently tested using a mouse model. Fourteen days after surgery, the groups treated by the examined wound cover showed a lower granulation, reepithelization, and inflammation score compared to both the uninfected groups, a lower dermis organization compared to the control, a higher scar thickness compared to the other groups, and a higher thickness of hypodermis and bacteria score compared to both the uninfected groups. This work demonstrates the basic parameters of the safety (biocompatibility) and performance (effect on healing) of the dressing as a medical device and indicates the feasibility of the concept of its preparation in outpatient conditions using a suitable functionalization device.

Zobrazit více v PubMed

Olsson M., Jarbrink U., Divakar U., Bajpai R., Upton Z., Schmidtchen A., Car J. The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair Regen. 2019;27:114–125. doi: 10.1111/wrr.12683. PubMed DOI

Guaccio A., Guarino V., Alvarez-Perez M.A., Cirillo V., Netti P.A., Ambrosio L. Influence of Electrospun Fiber Mesh Size on HMSC Oxygen Metabolism in 3D Collagen Matrices: Experimental and Theoretical Evidences. Biotechnol. Bioeng. 2011;108:1965–1976. doi: 10.1002/bit.23113. PubMed DOI

Duan R., Zhang J., Du X., Yao X., Konno K. Properties of Collagen from Skin, Scale and Bone of Carp (Cyprinus carpio) Food Chem. 2009;112:702–706. doi: 10.1016/j.foodchem.2008.06.020. DOI

Ambekar R.S., Kandasubramanian B. Advancements in Nanofibers for Wound Dressing: A Review. Eur. Polym. J. 2019;117:304–336. doi: 10.1016/j.eurpolymj.2019.05.020. DOI

Xu Z., Han S., Gu Z., Wu J. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Adv. Healthc. Mater. 2020;9:1901502. doi: 10.1002/adhm.201901502. PubMed DOI

Poljsak B., Šuput D., Milisav I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Med. Cell. Longev. 2013;2013:e956792. doi: 10.1155/2013/956792. PubMed DOI PMC

Gonzalez Flecha B.S., Repetto M., Evelson P., Boveris A. Inhibition of Microsomal Lipid Peroxidation by α-Tocopherol and α-Tocopherol Acetate. Xenobiotica. 1991;21:1013–1022. doi: 10.3109/00498259109039541. PubMed DOI

Braťka P., Buzgo M., Walaská H., Rosina J., Červeňák M., Louda M. Special Nanofiber Scaffold Designed for Cellular Products in the Treatment of Chronic Wounds; Proceedings of the 12th International Conference on Nanomaterials—Research & Application; Brno, Czech Republic. 21–23 October 2020; pp. 335–341. DOI

Paladini F., Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials. 2019;12:2540. doi: 10.3390/ma12162540. PubMed DOI PMC

Ceylan M., Yang S., Asmatulu R. Effects of gentamicin-loaded PCL nanofibers on growth of Gram positive and Gram negative bacteria. Int. J. Appl. Microbiol. Biotechnol. Res. 2017;5:40–51. doi: 10.33500/ijambr.2017.05.005. DOI

Mugabe C., Halwani M., Azghani A.O., Lafrenie R.M., Omri A. Mechanism of Enhanced Activity of Liposome-Entrapped Aminoglycosides against Resistant Strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006;50:2016–2022. doi: 10.1128/AAC.01547-05. PubMed DOI PMC

Ghosh D., Pramanik A., Sikdar N., Pranamik P. Synthesis of low molecular weight alginic acid nanoparticles through persulfate treatment as effective drug delivery system to manage drug resistant bacteria. Biotechnol. Bioprocess Eng. 2011;16:383–392. doi: 10.1007/s12257-010-0099-7. DOI

Rukholm G., Mugabe C., Azghani A., Omri A. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: A time–kill study. Int. J. Antimicrob. Agents. 2006;27:247–252. doi: 10.1016/j.ijantimicag.2005.10.021. PubMed DOI

Dowd S.E., Wolcott R.D., Kennedy J., Jones C., Cox S.B. Molecular Diagnostics and Personalised Medicine in Wound Care: Assessment of Outcomes. J Wound Care. 2011;20:232–239. doi: 10.12968/jowc.2011.20.5.232. PubMed DOI

Simonetti O., Lucarini G., Morroni G., Orlando F., Lazzarini R., Zizzi A., Brescini L., Provinciali M., Giacometti A., Offidani A., et al. New Evidence and Insights on Dalbavancin and Wound Healing in a Mouse Model of Skin Infection. Antimicrob. Agents Chemother. 2020;64:e02062-19. doi: 10.1128/AAC.02062-19. PubMed DOI PMC

Lazarus G.S., Cooper D.M., Knighton D.R., Margolis D.J., Percoraro R.E., Rodeheaver G., Robson M.C. Definitions and Guidelines for Assessment of Wounds and Evaluation of Healing. Wound Repair Regen. 1994;2:165–170. doi: 10.1046/j.1524-475X.1994.20305.x. PubMed DOI

James G.A., Swogger E., Wolcott R., Pulcini E.L., Secor P., Sestrich J., Costerton J.W., Stewart P.S. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44. doi: 10.1111/j.1524-475X.2007.00321.x. PubMed DOI

Powers J.G., Higham C., Broussard K., Phillips T.J. Wound Healing and Treating Wounds: Chronic Wound Care and Management. J. Am. Acad. Dermatol. 2016;74:607–625. doi: 10.1016/j.jaad.2015.08.070. PubMed DOI

Schultz G.S., Sibbald R.G., Falanga V., Ayello E.A., Dowsett C., Harding K., Romanelli M., Stacey M.C., Teot L., Vanscheidt W. Wound Bed Preparation: A Systematic Approach to Wound Management. Wound Repair Regen. 2003;11:S1–S28. doi: 10.1046/j.1524-475X.11.s2.1.x. PubMed DOI

Sovkova V., Vocetkova K., Rampichova M., Mickova A., Buzgo M., Lukasova V., Dankova J., Filova E., Necas A., Amler E. Platelet Lysate as a Serum Replacement for Skin Cell Culture on Biomimetic PCL Nanofibers. Platelets. 2017;29:395–405. doi: 10.1080/09537104.2017.1316838. PubMed DOI

Vocetkova K., Buzgo M., Sovkova V., Rampichova M., Staffa A., Filova E., Lukasova V., Doupnik M., Fiori F., Amler E. A Comparison of High Throughput Core–Shell 2D Electrospinning and 3D Centrifugal Spinning Techniques to Produce Platelet Lyophilisate-Loaded Fibrous Scaffolds and Their Effects on Skin Cells. RSC Adv. 2017;7:53706–53719. doi: 10.1039/C7RA08728D. DOI

Olekson M.A., Rose L.F., Carlsson A.H., Fletcher J.L., Leung K.P., Chan R.K. Ultrahigh Dose Gentamicin Alters Inflammation and Angiogenesis in Vivo and in Vitro. Wound Repair Regen. 2017;25:632–640. doi: 10.1111/wrr.12557. PubMed DOI

Junker J.P.E., Lee C.C.Y., Samaan S., Hackl F., Kiwanuka E., Minasian R.A., Tsai D.M., Tracy L.E., Onderdonk A.B., Eriksson E., et al. Topical Delivery of Ultrahigh Concentrations of Gentamicin Is Highly Effective in Reducing Bacterial Levels in Infected Porcine Full-Thickness Wounds. Plast. Reconstr. Surg. 2015;135:151–159. doi: 10.1097/PRS.0000000000000801. PubMed DOI

Abdul Khodir W.K.W., Abdul Razak A.H., Ng M.H., Guarino V., Susanti D. Encapsulation and Characterization of Gentamicin Sulfate in the Collagen Added Electrospun Nanofibers for Skin Regeneration. J. Funct. Biomater. 2018;9:36. doi: 10.3390/jfb9020036. PubMed DOI PMC

Kimna C., Tamburaci S., Tihminlioglu F. Novel Zein-Based Multilayer Wound Dressing Membranes with Controlled Release of Gentamicin. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;107:2057–2070. doi: 10.1002/jbm.b.34298. PubMed DOI

Hasturk H., Jones V.L., Andry C., Kantarci A. 1-Tetradecanol Complex Reduces Progression of Porphyromonas Gingivalis–Induced Experimental Periodontitis in Rabbits. J. Periodontol. 2007;78:924–932. doi: 10.1902/jop.2007.060293. PubMed DOI

Hasturk H., Goguet-Surmenian E., Blackwood A., Andry C., Kantarci A. 1-Tetradecanol Complex: Therapeutic Actions in Experimental Periodontitis. J. Periodontol. 2009;80:1103–1113. doi: 10.1902/jop.2009.090002. PubMed DOI

Havlik R.J., Plastic Surgery Educational Foundation DATA Committee Vitamin E and Wound Healing. Plast. Reconstr. Surg. 1997;100:1901–1902. doi: 10.1097/00006534-199712000-00043. PubMed DOI

Hemilä H. Vitamin E Administration May Decrease the Incidence of Pneumonia in Elderly Males. CIA. 2016;11:1379–1385. doi: 10.2147/CIA.S114515. PubMed DOI PMC

Hemilä H., Kaprio J. Modification of the Effect of Vitamin E Supplementation on the Mortality of Male Smokers by Age and Dietary Vitamin C. Am. J. Epidemiol. 2009;169:946–953. doi: 10.1093/aje/kwn413. PubMed DOI PMC

Hemilä H. Letter: Comparison of Different Vitamin E Forms Is Confounded by Heterogeneity in Vitamin E Effects. Nutr. Rev. 2018;76:722–723. doi: 10.1093/nutrit/nuy038. PubMed DOI

Tanaydin V., Conings J., Malyar M., van der Hulst R., van der Lei B. The Role of Topical Vitamin E in Scar Management: A Systematic Review. Aesthetic Surg. J. 2016;36:959–965. doi: 10.1093/asj/sjw046. PubMed DOI

Caddeo C., Manca M.L., Peris J.E., Usach I., Diez-Sales O., Matos M., Fernàndez-Busquets X., Fadda A.M., Manconi M. Tocopherol-Loaded Transfersomes: In Vitro Antioxidant Activity and Efficacy in Skin Regeneration. Int. J. Pharm. 2018;551:34–41. doi: 10.1016/j.ijpharm.2018.09.009. PubMed DOI

Bonferoni M.C., Riva F., Invernizzi A., Dellera E., Sandri G., Rossi S., Marrubini G., Bruni G., Vigani B., Caramella C., et al. Alpha Tocopherol Loaded Chitosan Oleate Nanoemulsions for Wound Healing. Evaluation on Cell Lines and Ex Vivo Human Biopsies, and Stabilization in Spray Dried Trojan Microparticles. Eur. J. Pharm. Biopharm. 2018;123:31–41. doi: 10.1016/j.ejpb.2017.11.008. PubMed DOI

Horikoshi Y., Kamizaki K., Hanaki T., Morimoto M., Kitagawa Y., Nakaso K., Kusumoto C., Matsura T. α-Tocopherol Promotes HaCaT Keratinocyte Wound Repair through the Regulation of Polarity Proteins Leading to the Polarized Cell Migration. BioFactors. 2018;44:180–191. doi: 10.1002/biof.1414. PubMed DOI

Na Y., Woo J., Choi W.I., Lee J.H., Hong J., Sung D. α-Tocopherol-Loaded Reactive Oxygen Species-Scavenging Ferrocene Nanocapsules with High Antioxidant Efficacy for Wound Healing. Int. J. Pharm. 2021;596:120205. doi: 10.1016/j.ijpharm.2021.120205. PubMed DOI

Lewis E.D., Meydani S.N., Wu D. Regulatory Role of Vitamin E in the Immune System and Inflammation. IUBMB Life. 2019;71:487–494. doi: 10.1002/iub.1976. PubMed DOI PMC

Fukuzawa K., Hayashi K., Suzuki A. Effects of α-Tocopherol Analogs on Lysosome Membranes and Fatty Acid Monolayers. Chem. Phys. Lipids. 1977;18:39–48. doi: 10.1016/0009-3084(77)90025-1. PubMed DOI

Prasad J.S. Effect of Vitamin E Supplementation on Leukocyte Function. Am. J. Clin. Nutr. 1980;33:606–608. doi: 10.1093/ajcn/33.3.606. PubMed DOI

Wang X., Quinn P.J. Vitamin E and Its Function in Membranes. Prog. Lipid Res. 1999;38:309–336. doi: 10.1016/S0163-7827(99)00008-9. PubMed DOI

Adams A.K., Connolly S.M. Allergic Contact Dermatitis from Vitamin E: The Experience at Mayo Clinic Arizona, 1987 to 2007. Dermatitis. 2010;21:199–202. doi: 10.2310/6620.2010.10018. PubMed DOI

de Groot A.C., Berretty P.J.M., van Ginkel C.J.W., den Hengst C.W., van Ulsen J., Weyland J.W. Allergic Contact Dermatitis from Tocopheryl Acetate in Cosmetic Creams. Contact Dermat. 1991;25:302–304. doi: 10.1111/j.1600-0536.1991.tb01878.x. PubMed DOI

Kosari P., Alikhan A., Sockolov M., Feldman S.R. Vitamin E and Allergic Contact Dermatitis. Dermatitis. 2010;21:148–153. doi: 10.2310/6620.2010.09083. PubMed DOI

Teo C.W.L., Tay S.H.Y., Tey H.L., Ung Y.W., Yap W.N. Vitamin E in Atopic Dermatitis: From Preclinical to Clinical Studies. DRM. 2021;237:553–564. doi: 10.1159/000510653. PubMed DOI

Naguib M.M., Valvano M.A. Vitamin E Increases Antimicrobial Sensitivity by Inhibiting Bacterial Lipocalin Antibiotic Binding. mSphere. 2018;3:e00564-18. doi: 10.1128/mSphere.00564-18. PubMed DOI PMC

Vergalito F., Pietrangelo L., Petronio G.P., Colitto F., Cutuli M.A., Magnifico I., Venditti N., Guerra G., Marco R.D. Vitamin E for Prevention of Biofilm-Caused Healthcare-Associated Infections. Open Med. 2020;15:14–21. doi: 10.1515/med-2020-0004. PubMed DOI PMC

Amevor F.K., Cui Z., Ning Z., Du X., Jin N., Shu G., Deng X., Zhu Q., Tian Y., Li D., et al. Synergistic Effects of Quercetin and Vitamin E on Egg Production, Egg Quality, and Immunity in Aging Breeder Hens. Poult. Sci. 2021;100:101481. doi: 10.1016/j.psj.2021.101481. PubMed DOI PMC

Kanikkannan N., Kandimalla K., Lamba S.S., Singh M. Structure-Activity Relationship of Chemical Penetration Enhancers in Transdermal Drug Delivery. Curr. Med. Chem. 2000;7:593–608. doi: 10.2174/0929867003374840. PubMed DOI

Kanikkannan N., Singh M. Skin Permeation Enhancement Effect and Skin Irritation of Saturated Fatty Alcohols. Int. J. Pharm. 2002;248:219–228. doi: 10.1016/S0378-5173(02)00454-4. PubMed DOI

Wink D.A., Hines H.B., Cheng R.Y.S., Switzer C.H., Flores-Santana W., Vitek M.P., Ridnour L.A., Colton C.A. Nitric Oxide and Redox Mechanisms in the Immune Response. J. Leukoc. Biol. 2011;89:873–891. doi: 10.1189/jlb.1010550. PubMed DOI PMC

Niki E. Role of Vitamin E as a Lipid-Soluble Peroxyl Radical Scavenger: In Vitro and in Vivo Evidence. Free Radic. Biol. Med. 2014;66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022. PubMed DOI

Buzgo M., Plencner M., Rampichova M., Litvinec A., Prosecka E., Staffa A., Kralovic M., Filova E., Doupnik M., Lukasova V., et al. Poly-ε-Caprolactone and Polyvinyl Alcohol Electrospun Wound Dressings: Adhesion Properties and Wound Management of Skin Defects in Rabbits. Regen. Med. 2019;14:423–445. doi: 10.2217/rme-2018-0072. PubMed DOI

Liu G.-S., Yan X., Yan F.-F., Chen F.-X., Hao L.-Y., Chen S.-J., Lou T., Ning X., Long Y.-Z. In Situ Electrospinning Iodine-Based Fibrous Meshes for Antibacterial Wound Dressing. Nanoscale Res. Lett. 2018;13:309. doi: 10.1186/s11671-018-2733-9. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...