Liposomal Binuclear Ir(III)-Cu(II) Coordination Compounds with Phosphino-Fluoroquinolone Conjugates for Human Prostate Carcinoma Treatment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36383699
PubMed Central
PMC9727733
DOI
10.1021/acs.inorgchem.2c03015
Knihovny.cz E-zdroje
- MeSH
- ionty MeSH
- karcinom * MeSH
- komplexní sloučeniny * farmakologie chemie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- liposomy MeSH
- měď chemie MeSH
- prostata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ionty MeSH
- komplexní sloučeniny * MeSH
- liposomy MeSH
- měď MeSH
Novel heteronuclear IrIII-CuII coordination compounds ([Ir(η5-Cp*)Cl2Pcfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (1), [Ir(η5-Cp*)Cl2Pnfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (2), [Ir(η5-Cp*)Cl2Plfx-Cu(phen)](NO3)·1.3(H2O)·1.95(CH3OH) (3), [Ir(η5-Cp*)Cl2Psfx-Cu(phen)] (4)) bearing phosphines derived from fluoroquinolones, namely, sparfloxacin (Hsfx), ciprofloxacin (Hcfx), lomefloxacin (Hlfx), and norfloxacin (Hnfx), have been synthesized and studied as possible anticancer chemotherapeutics. All compounds have been characterized by electrospray ionization mass spectrometry (ESI-MS), a number of spectroscopic methods (i.e., IR, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, variable-temperature magnetic susceptibility measurements, and X-ray diffractometry. The coordination geometry of IrIII in all complexes adopts a characteristic piano-stool geometry with the η5-coordinated and three additional sites occupied by two chloride and phosphine ligands, while CuII ions in complexes 1 and 2 form a distorted square-pyramidal coordination geometry, and in complex 3, the coordination geometry around CuII ions is a distorted octahedron. Interestingly, the crystal structure of [Ir(η5-Cp*)Cl2Plfx-Cu(phen)] features the one-dimensional (1D) metal-organic polymer. Liposomes loaded with redox-active and fluorescent [Ir(η5-Cp*)Cl2Pcfx-Cu(phen)] (1L) have been prepared to increase water solubility and minimize serious systemic side effects. It has been proven, by confocal microscopy and an inductively coupled plasma mass spectrometry (ICP-MS) analysis, that the liposomal form of compound 1 can be effectively accumulated inside human lung adenocarcinoma and human prostate carcinoma cells with selective localization in nuclei. A cytometric analysis showed dominance of apoptosis over the other cell death types. Furthermore, the investigated nanoformulations induced changes in the cell cycle, leading to S phase arrest in a dose-dependent manner. Importantly, in vitro anticancer action on three-dimensional (3D) multicellular tumor spheroids has been demonstrated.
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Kraków Poland
Faculty of Chemistry University of Wroclaw Joliot Curie 14 50 383 Wroclaw Poland
Instituto de Nanociencia y Materiales de Aragón CSIC Universidad de Zaragoza 50009 Zaragoza Spain
Małopolska Centre of Biotechnology Jagiellonian University Gronostajowa 7A 30 387 Krakow Poland
Zobrazit více v PubMed
Sharma P. C.; Goyal R.; Sharma A.; Sharma D.; Saini N.; Rajak H.; Sharma S.; Thakur V. K. Insights on fluoroquinolones in cancer therapy: chemistry and recent developments. Mater. Today Chem. 2020, 17, 10029610.1016/j.mtchem.2020.100296. DOI
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA—Cancer J. Clin. 2021, 71, 209–249. 10.3322/caac.21660. PubMed DOI
Xu Z.; Yang Y.; Jia X.; Guo L.; Ge X.; Zhong G.; Chen S.; Liu Z. Novel cyclometalated iridium(III) phosphine-imine (P∧N) complexes: highly efficient anticancer and anti-lung metastasis agents in vivo. Inorg. Chem. Front. 2020, 7, 1273–1283. 10.1039/C9QI01492F. DOI
Kołoczek P.; Skórska-Stania A.; Cierniak A.; Sebastian V.; Komarnicka U. K.; Płotek M.; Kyzioł A. Polymeric micelle-mediated delivery of half-sandwich ruthenium(II) complexes with phosphanes derived from fluoroloquinolones for lung adenocarcinoma treatment. Eur. J. Pharm. Biopharm. 2018, 128, 69–81. 10.1016/j.ejpb.2018.04.016. PubMed DOI
Van Niekerk A.; Chellan P.; Mapolie S. F. Heterometallic Multinuclear Complexes as Anti-Cancer Agents-An Overview of Recent Developments. Eur. J. Inorg. Chem. 2019, 2019, 3432–3455. 10.1002/ejic.201900375. DOI
Mirzadeh N.; Reddy T. S.; Privér S. H.; Bhargava S. K. Synthesis, anti-proliferative and apoptosis-inducing studies of palladacycles containing a diphosphine and a Sn,As-based chelate ligand. Dalton Trans. 2019, 48, 5183–5192. 10.1039/C8DT03875A. PubMed DOI
Wenzel M.; Bigaeva E.; Richard P.; Le Gendre P.; Picquet M.; Casini A.; Bodio E. New heteronuclear gold(I)-platinum(II) complexes with cytotoxic properties: are two metals better than one?. J. Inorg. Biochem. 2014, 141, 10–16. 10.1016/j.jinorgbio.2014.07.011. PubMed DOI
Farrell N. P. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem. Soc. Rev. 2015, 44, 8773–8785. 10.1039/C5CS00201J. PubMed DOI
Lopes J.; Alves D.; Morais T. S.; Costa P. J.; Piedade M. F. M.; Marques F.; Villa de Brito M. J.; Garcia M. H. New copper(I) and heteronuclear copper(I)-ruthenium(II) complexes: Synthesis, structural characterization and cytotoxicity. J. Inorg. Biochem. 2017, 169, 68–78. 10.1016/j.jinorgbio.2017.01.007. PubMed DOI
Manzotti C.; Pratesi G.; Menta E.; Di Domenico R.; Cavalletti E.; Fiebig H. H.; Kelland L. R.; Farrell N.; Polizzi D.; Supino R.; Pezzoni G.; Zunino F. BBR 3464: a novel triplatinum complex, exhibiting a preclinical profile of antitumor efficacy different from cisplatin. Clin. Cancer Res. 2000, 6, 2626–2634. PubMed
Tripathy S. K.; De U.; Dehury N.; Pal S.; Kim H. S.; Patra S. Dinuclear [{(p-cym)RuCl}2(μ-phpy)](PF6)2 and heterodinuclear [(ppy)2Ir(μ-phpy)Ru(p-cym)Cl](PF6)2 complexes: synthesis, structure and anticancer activity. Dalton Trans. 2014, 43, 14546–14549. 10.1039/C4DT01033G. PubMed DOI
Zhu G.; Ma L.. Preparation Thereof and Therapeutic Use Thereof. US9650402B2, 2017.
Wehbe M.; Leung A. W. Y.; Abrams M. J.; Orvig C.; Bally M. B. A Perspective – can copper complexes be developed as a novel class of therapeutics?. Dalton Trans. 2017, 46, 10758–10773. 10.1039/C7DT01955F. PubMed DOI
Sessoli R.; Gatteschi D.; Caneschi A.; Novak M. A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. 10.1038/365141a0. DOI
Nava A.; Rigamonti L.; Zangrando E.; Sessoli R.; Wernsdorfer W.; Cornia A. Redox-Controlled Exchange Bias in a Supramolecular Chain of Fe4 Single-Molecule Magnets. Angew. Chem., Int. Ed. 2015, 54, 8777–8782. 10.1002/anie.201500897. PubMed DOI
Ako A. M.; Mereacre V.; Lan Y.; Wernsdorfer W.; Clerac R.; Anson C. E.; Powell A. K. An Undecanuclear FeIII Single-Molecule Magnet. Inorg. Chem. 2010, 49, 1–3. 10.1021/ic901747w. PubMed DOI
Ako A. M.; Hewitt I. J.; Mereacre V.; Clerac R.; Wernsdorfer W.; Anson C. E.; Powell A. K. A ferromagnetically coupled mn(19) aggregate with a record S = 83/2 ground spin state. Angew. Chem., Int. Ed. 2006, 45, 4926–4930. 10.1002/anie.200601467. PubMed DOI
Moore E. A.; Janes R.. Metal–Ligand Bonding; Royal Society of Chemistry, 2007.
Korchagin D. V.; Ivakhnenko E. P.; Demidov O. P.; Akimov A. V.; Morgunov R. B.; Starikov A. G.; Palii A. V.; Minkin V. I.; Aldoshin S. M. Field supported slow magnetic relaxation in a quasi-one-dimensional copper(ii) complex with a pentaheterocyclictriphenodioxazine. New J. Chem. 2021, 45, 21912–21918. 10.1039/D1NJ03217H. DOI
Han J.; Xi L.; Huang X.; Li L. Magnetic Relaxation in a Dysprosium–Copper Heterometallic Cluster Involving Nitronyl Nitroxide Biradicals. Cryst. Growth Des. 2021, 21, 7186–7193. 10.1021/acs.cgd.1c01028. DOI
Boča R.; Rajnák C.; Titiš J.; Valigura D. Field Supported Slow Magnetic Relaxation in a Mononuclear Cu(II) Complex. Inorg. Chem. 2017, 56, 1478–1482. 10.1021/acs.inorgchem.6b02535. PubMed DOI
Hayashi K.; Nakamura M.; Sakamoto W.; Yogo Y.; Miki H.; Ozaki S.; Abe M.; Matsumoto T.; Ishimura K. Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia Treatment. Theranostics. 2013, 3, 366–376. 10.7150/thno.5860. PubMed DOI PMC
Patil R. M.; Thorat N. D.; Shete P. B.; Bedge P. A.; Gavde S.; Joshi M. G.; Tofail S. A. M.; Bohara R. A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 2018, 13, 63–72. 10.1016/j.bbrep.2017.12.002. PubMed DOI PMC
Bohara R. A.; Thorat N. D.; Chaurasia A. K.; Pawar S. H. Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 2015, 5, 47225–47234. 10.1039/C5RA04553C. DOI
He X.; Liu X.; Tang Y.; Du J.; Tian M.; Xu Z.; Liu X.; Liu Z. Half-sandwich Iridium(III) complexes with triphenylamine-substituted dipyridine frameworks and bioactivity applications. Dyes Pigm. 2019, 160, 217–226. 10.1016/j.dyepig.2018.08.006. DOI
Du Q.; Yang Y.; Guo L.; Tian M.; Ge X.; Tian Z.; Zhao L.; Xu Z.; Li J.; Liu Z. Fluorescent half-sandwich phosphine-sulfonate iridium(III) and ruthenium(II) complexes as potential lysosome-targeted anticancer agents. Dyes Pigm. 2019, 162, 821–830. 10.1016/j.dyepig.2018.11.009. DOI
Kozieł S.; Komarnicka U. K.; Ziółkowska A.; Skórska-Stania A.; Pucelik B.; Płotek M.; Sebastian V.; Bieńko A.; Stochel G.; Kyzioł A. Anticancer potency of novel organometallic Ir(III) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg. Chem. Front. 2020, 7, 3386–3401. 10.1039/D0QI00538J. DOI
Su W.; Wang X.; Lei X.; Xiao Q.; Huang S.; Li P. Synthesis, characterization, cytotoxic activity of half-sandwich rhodium(III), and iridium(III) complexes with curcuminoids. J. Organomet. Chem. 2017, 833, 54–60. 10.1016/j.jorganchem.2017.01.028. DOI
Millett A. J.; Habtemariam A.; Romero-Canelón I.; Clarkson G. J.; Sadler P. J. Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2-Phenylpyridine Ligands. Organometallics 2015, 34, 2683–2694. 10.1021/acs.organomet.5b00097. PubMed DOI PMC
Lapasam A.; Hussain O.; Phillips R. M.; Kaminsky W. R.; Kollipara M. R. Synthesis, Characterization and Chemosensitivity Studies of Half-Sandwich Ruthenium, Rhodium and Iridium Complexes Containing κ1(S) and κ2(N,S) Aroylthiourea Ligands. J. Organomet. Chem. 2019, 880, 272.10.1016/j.jorganchem.2018.11.020. DOI
Liu Z.; Sadler P. J. Organoiridium Complexes: Anticancer Agents and Catalysts. Acc. Chem. Res. 2014, 47, 1174–1185. 10.1021/ar400266c. PubMed DOI PMC
Wilbuer A.; Vlecken D. H.; Schmitz D. J.; Kräling K.; Harms K.; Bagowski C. P.; Meggers E. Iridium Complex with Antiangiogenic Properties. Angew. Chem., Int. Ed. 2010, 49, 3839–3842. 10.1002/anie.201000682. PubMed DOI
Tian Z.; Yang Y.; Guo L.; Zhong G.; Li J.; Liu Z. Dual-functional cyclometalated iridium imine NHC complexes: highly potent anticancer and antimetastatic agents. Inorg. Chem. Front. 2018, 5, 3106–3112. 10.1039/C8QI00920A. DOI
Qu W.; Zuo W.; Li N.; Hou Y.; Song Z.; Gou G.; Yang J. Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. J. Drug Target. 2017, 25, 661–672. 10.1080/1061186X.2017.1323334. PubMed DOI
Sercombe L.; Veerati T.; Moheimani F.; Wu S. Y.; Sood A. K.; Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 28610.3389/fphar.2015.00286. PubMed DOI PMC
Pattni B. S.; Chupin V. V.; Torchilin V. R. P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. 10.1021/acs.chemrev.5b00046. PubMed DOI
Petrauskas A. A.; Kolovanov E. ACD/LogP method description, Perspect. Drug Discovery Des. 2000, 19, 99–116. 10.1023/A:1008719622770. DOI
Bykowska A.; Starosta R.; Komarnicka U. K.; Ciunik Z.; Kyzioł A.; Guz-Regner K.; Bugla-Płoskońska G.; Jeżowska-Bojczuk M. Phosphine derivatives of ciprofloxacin and norfloxacin, a new class of potential therapeutic agents. New J. Chem. 2014, 38, 1062–1071. 10.1039/c3nj01243c. DOI
Komarnicka U. K.; Starosta R.; Kyzioł A.; Płotek M.; Puchalska M.; Jeżowska-Bojczuk M. New copper(I) complexes bearing lomefloxacin motif: Spectroscopic properties, in vitro cytotoxicity and interactions with DNA and human serum albumin. J. Inorg. Biochem. 2016, 165, 25–35. 10.1016/j.jinorgbio.2016.09.015. PubMed DOI
Komarnicka U. K.; Starosta R.; Kyzioł A.; Jeżowska-Bojczuk M. Copper(i) complexes with phosphine derived from sparfloxacin. Part I – structures, spectroscopic properties and cytotoxicity. Dalton Trans. 2015, 44, 12688–12699. 10.1039/C5DT01146A. PubMed DOI
Kyzioł A.; Cierniak A.; Gubernator J.; Markowski A.; Jeżowska-Bojczuk M.; Komarnicka U. K. Copper(i) complexes with phosphine derived from sparfloxacin. Part III: multifaceted cell death and preliminary study of liposomal formulation of selected copper(i) complexes. Dalton Trans. 2018, 47, 1981–1992. 10.1039/C7DT03917D. PubMed DOI
Bykowska A.; Komarnicka U. K.; Jeżowska-Bojczuk M.; Kyzioł A. CuI and CuII complexes with phosphine derivatives of fluoroquinolone antibiotics - A comparative study on the cytotoxic mode of action. J. Inorg. Biochem. 2018, 181, 1–10. 10.1016/j.jinorgbio.2018.01.008. PubMed DOI
Efthimiadou E. K.; Katsaros N.; Karaliota A.; Psomas G. Mononuclear copper(II) complexes with quinolones and nitrogen-donor heterocyclic ligands: Synthesis, characterization, biological activity and interaction with DNA. Inorg. Chim. Acta 2007, 360, 4093–4102. 10.1016/j.ica.2007.05.042. DOI
Efthimiadou E. K.; Thomadaki H.; Sanakis Y.; Raptopoulou C. P.; Katsaros N.; Scorilas A.; Karaliota A.; Psomas G. Structure and biological activities of metal complexes of flumequine. J. Inorg. Biochem. 2007, 101, 64.10.1016/j.jinorgbio.2006.07.019. PubMed DOI
Uivarosi V. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update. Molecules 2013, 18, 11153–11197. 10.3390/molecules180911153. PubMed DOI PMC
Zaky M.; El-Sayed M. Y.; El-Megharbel S. M.; Taleb S. A.; Refat M. S. Complexes of nalidixic acid with some vital metal ions: Synthesis, chemical structure elucidation, and antimicrobial evaluation. Russ. J. Gen. Chem. 2013, 83, 2488–2501. 10.1134/S1070363213120475. DOI
Jeffery J. C.; Mather J. P.; Otter C. A.; Thornton P.; Ward M. D. Synthesis of the potentially pentadentate ligand 6,6″-bis(2-hydroxyphenyl)-2,2′: 6′,2″- terpyridine (H2L) and the crystal structure and magnetic properties of [{Cu(HL)}2][PF6]2·5MeCN. J. Chem. Soc., Dalton Trans. 1995, 5, 819–824. 10.1039/DT9950000819. DOI
Garribba E.; Micera G.; Sanna D.; Strnna-Erre L. The Cu(II)-2,2′-bipyridine system revisited. Inorg. Chim. Acta 2000, 299, 253–261. 10.1016/S0020-1693(99)00508-3. DOI
Chilton N. F.; Anderson R. P.; Turner L. D.; Soncini A.; Murray K. S. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-Coupled Polynuclear d- and f-Block Complexes. J. Comput. Chem. 2013, 34, 1164–1175. 10.1002/jcc.23234. PubMed DOI
Mlakar M.; Cuculić V.; Frka S.; Gašparović B. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces. Bioelectrochemistry 2018, 120, 10–17. 10.1016/j.bioelechem.2017.11.004. PubMed DOI
Hazarika P.; Bezbaruah B.; Das P.; Medhi O. K.; Medhi C. A model study on the stacking interaction of phenanthroline ligand with nucleic acid base pairs: An ab initio, MP2 and DFT studies. J. Inorg. Biochem. 2011, 2, 153–158. 10.4236/jbpc.2011.22019. DOI
Wang Z.; Bilegsaikhan A.; Jerozal R. T.; Pitt T. A.; Milner P. J. Evaluating the Robustness of Metal-Organic Frameworks for Synthetic Chemistry. ACS Appl. Mater. Interfaces 2021, 13, 17517–17531. 10.1021/acsami.1c01329. PubMed DOI PMC
Yang V. W.The Cell Cycle. In Physiology of the Gastrointestinal Tract, 5th ed.; Elsevier, 2012; pp 451–543.