• This record comes from PubMed

Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy

. 2022 Nov ; 9 (6) : 064301. [epub] 20221108

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of ( - 0.3 ± 0.1 ) π ≤ ϕ ≤ ( 0.1 ± 0.2 ) π and 18.2 - 1.4 + 1.7 ≤ T ≤ 23.9 - 1.1 + 1.2 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.

See more in PubMed

Weinkauf R., Schanen P., Yang D., Soukara S., and Schlag E. W., “ Elementary processes in peptides: Electron mobility and dissociation in peptide cations in the gas phase,” J. Phys. Chem. 99, 11255–11265 (1995).10.1021/j100028a029 DOI

Wörner H. J., Arrell C. A., Banerji N., Cannizzo A., Chergui M., Das A. K., Hamm P., Keller U., Kraus P. M., Liberatore E., Lopez-Tarifa P., Lucchini M., Meuwly M., Milne C., Moser J.-E., Rothlisberger U., Smolentsev G., Teuscher J., van Bokhoven J. A., and Wenger O., “ Charge migration and charge transfer in molecular systems,” Struct. Dyn. 4, 061508 (2017).10.1063/1.4996505 PubMed DOI PMC

Calegari F., Ayuso D., Trabattoni A., Belshaw L., Camillis S. D., Anumula S., Frassetto F., Poletto L., Palacios A., Decleva P., Greenwood J. B., Martín F., and Nisoli M., “ Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).10.1126/science.1254061 PubMed DOI

Calegari F., Trabattoni A., Palacios A., Ayuso D., Castrovilli M. C., Greenwood J. B., Decleva P., Martín F., and Nisoli M., “ Charge migration induced by attosecond pulses in bio-relevant molecules,” J. Phys. B 49, 142001 (2016).10.1088/0953-4075/49/14/142001 DOI

Schwickert D., Ruberti M., Kolorenč P., Usenko S., Przystawik A., Baev K., Baev I., Braune M., Bocklage L., Czwalinna M. K., Deinert S., Düsterer S., Hans A., Hartmann G., Haunhorst C., Kuhlmann M., Palutke S., Röhlsberger R., Rönsch-Schulenburg J., Schmidt P., Toleikis S., Viefhaus J., Martins M., Knie A., Kip D., Averbukh V., Marangos J. P., and Laarmann T., “ Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time,” Sci. Adv. 8, eabn6848 (2022).10.1126/sciadv.abn6848 PubMed DOI PMC

Arnold C., Vendrell O., and Santra R., “ Electronic decoherence following photoionization: Full quantum-dynamical treatment of the influence of nuclear motion,” Phys. Rev. A 95, 033425 (2017).10.1103/PhysRevA.95.033425 DOI

Vacher M., Bearpark M. J., Robb M. A., and Malhado J. P., “ Electron dynamics upon ionization of polyatomic molecules: Coupling to quantum nuclear motion and decoherence,” Phys. Rev. Lett. 118, 083001 (2017).10.1103/PhysRevLett.118.083001 PubMed DOI

Lara-Astiaso M., Palacios A., Decleva P., Tavernelli I., and Martín F., “ Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine,” Chem. Phys. Lett. 683, 357–364 (2017).10.1016/j.cplett.2017.05.008 DOI

Despré V., Marciniak A., Loriot V., Galbraith M. C. E., Rouzée A., Vrakking M. J. J., Lépine F., and Kuleff A. I., “ Attosecond hole migration in benzene molecules surviving nuclear motion,” J. Phys. Chem. Lett. 6, 426–431 (2015).10.1021/jz502493j PubMed DOI

Laarmann T., Shchatsinin I., Singh P., Zhavoronkov N., Gerhards M., Schulz C. P., and Hertel I. V., “ Coherent control of bond breaking in amino acid complexes with tailored femtosecond pulses,” J. Chem. Phys. 127, 201101 (2007).10.1063/1.2806029 PubMed DOI

Laarmann T., Shchatsinin I., Singh P., Zhavoronkov N., Schulz C. P., and Hertel I. V., “ Femtosecond pulse shaping as analytic tool in mass spectrometry of complex polyatomic systems,” J. Phys. B 41, 074005 (2008).10.1088/0953-4075/41/7/074005 DOI

Jakob M. A., Namboodiri M., Prandolini M. J., and Laarmann T., “ Generation and characterization of tailored MIR waveforms for steering molecular dynamics,” Opt. Express 27, 26979–26988 (2019).10.1364/OE.27.026979 PubMed DOI

Mayer D., Lever F., Picconi D., Metje J., Alisauskas S., Calegari F., Düsterer S., Ehlert C., Feifel R., Niebuhr M., Manschwetus B., Kuhlmann M., Mazza T., Robinson M. S., Squibb R. J., Trabattoni A., Wallner M., Saalfrank P., Wolf T. J. A., and Gühr M., “ Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy,” Nat. Commun. 13, 198 (2022).10.1038/s41467-021-27908-y PubMed DOI PMC

Hall J. C., “ Review: Glycine,” J. Parenter. Enteral Nutr. 22, 393–398 (1998).10.1177/0148607198022006393 PubMed DOI

Javadpour M. M., Eilers M., Groesbeek M., and Smith S. O., “ Helix packing in polytopic membrane proteins: Role of glycine in transmembrane helix association,” Biophys. J. 77, 1609–1618 (1999).10.1016/S0006-3495(99)77009-8 PubMed DOI PMC

López-Corcuera B., Geerlings A., and Aragón C., “ Glycine neurotransmitter transporters: An update,” Mol. Membr. Biol. 18(1), 13–20 (2001).10.1080/09687680010028762 PubMed DOI

Plekan O., Feyer V., Richter R., Coreno M., de Simone M., Prince K. C., and Carravetta V., “ Investigation of the amino acids glycine, proline, and methionine by photoemission spectroscopy,” J. Phys. Chem. A 111, 10998–11005 (2007).10.1021/jp075384v PubMed DOI

Elsila J. E., Glavin D. P., and Dworkin J. P., “ Cometary glycine detected in samples returned by stardust,” Meteoritics Planet. Sci. 44, 1323–1330 (2009).10.1111/j.1945-5100.2009.tb01224.x DOI

Altwegg K., Balsiger H., Bar-Nun A., Berthelier J.-J., Bieler A., Bochsler P., Briois C., Calmonte U., Combi M. R., Cottin H., Keyser J. D., Dhooghe F., Fiethe B., Fuselier S. A., Gasc S., Gombosi T. I., Hansen K. C., Haessig M., Jäckel A., Kopp E., Korth A., Roy L. L., Mall U., Marty B., Mousis O., Owen T., Rème H., Rubin M., Sémon T., Tzou C.-Y., Waite J. H., and Wurz P., “ Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67p/Churyumov-Gerasimenko,” Sci. Adv. 2, e1600285 (2016).10.1126/sciadv.1600285 PubMed DOI PMC

Barillot T., Alexander O., Cooper B., Driver T., Garratt D., Li S., Al Haddad A., Sanchez-Gonzalez A., Agåker M., Arrell C., Bearpark M. J., Berrah N., Bostedt C., Bozek J., Brahms C., Bucksbaum P. H., Clark A., Doumy G., Feifel R., Frasinski L. J., Jarosch S., Johnson A. S., Kjellsson L., Kolorenč P., Kumagai Y., Larsen E. W., Matia-Hernando P., Robb M., Rubensson J.-E., Ruberti M., Sathe C., Squibb R. J., Tan A., Tisch J. W. G., Vacher M., Walke D. J., Wolf T. J. A., Wood D., Zhaunerchyk V., Walter P., Osipov T., Marinelli A., Maxwell T. J., Coffee R., Lutman A. A., Averbukh V., Ueda K., Cryan J. P., and Marangos J. P., “ Correlation-driven transient hole dynamics resolved in space and time in the isopropanol molecule,” Phys. Rev. X 11, 031048 (2021).10.1103/PhysRevX.11.031048 DOI

Neville J. J., Zheng Y., and Brion C. E., “ Glycine valence orbital electron densities: Comparison of electron momentum spectroscopy experiments with Hartree Fock and density functional theories,” J. Am. Chem. Soc. 118, 10533–10544 (1996).10.1021/ja9613015 DOI

Bonifacio R., De Salvo L., Pierini P., Piovella N., and Pellegrini C., “ Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).10.1103/PhysRevLett.73.70 PubMed DOI

Saldin E. L., Schneidmiller E. A., and Yurkov M. V., The Physics of Free Electron Lasers ( Springer-Verlag, Berlin, Heidelberg, 2000).

Tiedtke K., Feldhaus J., Hahn U., Jastrow U., Nunez T., Tschentscher T., Bobashev S. V., Sorokin A. A., Hastings J. B., Möller S., Cibik L., Gottwald A., Hoehl A., Kroth U., Krumrey M., Schöppe H., Ulm G., and Richter M., “ Gas detectors for x-ray lasers,” J. Appl. Phys. 103, 094511 (2008).10.1063/1.2913328 DOI

Rönsch-Schulenburg J., Hass E., Lockmann N., Plath T., Rehders M., Roßbach J., Brenner G., Dziarzhytski S., Golz T., Schlarb H., Schmidt B., Schneidmiller E., Schreiber S., Steffen B., Stojanovic N., Wunderlich S., and Yurkov M., in Proceedings of the 36th International Free Electron Laser Conference FEL2014, edited by J. Chrin, S. Reiche, and V. R. W. Schaa (PSI, 2014), pp. 342–345.

Usenko S., Schwickert D., Przystawik A., Baev K., Baev I., Braune M., Bocklage L., Czwalinna M. K., Deinert S., Düsterer S., Hans A., Hartmann G., Haunhorst C., Kuhlmann M., Palutke S., Röhlsberger R., Rönsch-Schulenburg J., Schmidt P., Skruszewicz S., Toleikis S., Viefhaus J., Martins M., Knie A., Kip D., and Laarmann T., “ Auger electron wave packet interferometry on extreme timescales with coherent soft x-rays,” J. Phys. B 53, 244008 (2020).10.1088/1361-6455/abc661 DOI

Savchenko V., Gel'mukhanov F., Laarmann T., Polyutov S. P., and Kimberg V., “ Dynamical phase shift in x-ray absorption and ionization spectra by two delayed x-ray laser fields,” Phys. Rev. A 104, 013114 (2021).10.1103/PhysRevA.104.013114 DOI

Usenko S., Przystawik A., Jakob M. A., Lazzarino L. L., Brenner G., Toleikis S., Haunhorst C., Kip D., and Laarmann T., “ Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nat. Commun. 8, 15626 (2017).10.1038/ncomms15626 PubMed DOI PMC

Lazzarino L. L., Kazemi M. M., Haunhorst C., Becker C., Hartwell S., Jakob M. A., Przystawik A., Usenko S., Kip D., Hartl I., and Laarmann T., “ Shaping femtosecond laser pulses at short wavelength with grazing-incidence optics,” Opt. Express 27, 13479–13491 (2019).10.1364/OE.27.013479 PubMed DOI

Hartwell S., Azima A., Haunhorst C., Kazemi M., Namboodiri M., Przystawik A., Schwickert D., Skruszewicz S., Kip D., Drescher M., and Laarmann T., “ Full characterization of a phase-locked DUV double pulse generated in an all-reflective shaping setup working under grazing incidence in a broad spectral range,” Appl. Phys. B 128, 2 (2021).10.1007/s00340-021-07722-6 DOI

Usenko S., Przystawik A., Lazzarino L. L., Jakob M. A., Jacobs F., Becker C., Haunhorst C., Kip D., and Laarmann T., “ Split-and-delay unit for FEL interferometry in the XUV spectral range,” Appl. Sci. 7, 544 (2017).10.3390/app7060544 DOI

Skruszewicz S., Przystawik A., Schwickert D., Sumfleth M., Namboodiri M., Hilbert V., Klas R., Gierschke P., Schuster V., Vorobiov A., Haunhorst C., Kip D., Limpert J., Rothhardt J., and Laarmann T., “ Table-top interferometry on extreme time and wavelength scales,” Opt. Express 29, 40333–40344 (2021).10.1364/OE.446563 PubMed DOI

Kuleff A. I., Breidbach J., and Cederbaum L. S., “ Multielectron wave-packet propagation: General theory and application,” J. Chem. Phys. 123, 044111 (2005).10.1063/1.1961341 PubMed DOI

Cannington P. and Ham N. S., “ He(I) and He(II) photoelectron spectra of glycine and related molecules,” J. Electron Spectrosc. Relat. Phenom. 32, 139–151 (1983).10.1016/0368-2048(83)85092-0 DOI

Cooper B., Kolorenč P., Frasinski L. J., Averbukh V., and Marangos J. P., “ Analysis of a measurement scheme for ultrafast hole dynamics by few femtosecond resolution x-ray pump-probe auger spectroscopy,” Faraday Discuss. 171, 93–111 (2014).10.1039/C4FD00051J PubMed DOI

Cederbaum L. and Zobeley J., “ Ultrafast charge migration by electron correlation,” Chem. Phys. Lett. 307, 205–210 (1999).10.1016/S0009-2614(99)00508-4 DOI

Kuleff A. I. and Cederbaum L. S., “ Charge migration in different conformers of glycine: The role of nuclear geometry,” Chem. Phys. 338, 320–328 (2007).10.1016/j.chemphys.2007.04.012 DOI

Faatz B., Plönjes E., Ackermann S., Agababyan A., Asgekar V., Ayvazyan V., Baark S., Baboi N., Balandin V., von Bargen N., Bican Y., Bilani O., Bödewadt J., Böhnert M., Böspflug R., Bonfigt S., Bolz H., Borges F., Borkenhagen O., Brachmanski M., Braune M., Brinkmann A., Brovko O., Bruns T., Castro P., Chen J., Czwalinna M. K., Damker H., Decking W., Degenhardt M., Delfs A., Delfs T., Deng H., Dressel M., Duhme H.-T., Düsterer S., Eckoldt H., Eislage A., Felber M., Feldhaus J., Gessler P., Gibau M., Golubeva N., Golz T., Gonschior J., Grebentsov A., Grecki M., Grün C., Grunewald S., Hacker K., Hänisch L., Hage A., Hans T., Hass E., Hauberg A., Hensler O., Hesse M., Heuck K., Hidvegi A., Holz M., Honkavaara K., Höppner H., Ignatenko A., Jäger J., Jastrow U., Kammering R., Karstensen S., Kaukher A., Kay H., Keil B., Klose K., Kocharyan V., Köpke M., Körfer M., Kook W., Krause B., Krebs O., Kreis S., Krivan F., Kuhlmann J., Kuhlmann M., Kube G., Laarmann T., Lechner C., Lederer S., Leuschner A., Liebertz D., Liebing J., Liedtke A., Lilje L., Limberg T., Lipka D., Liu B., Lorbeer B., Ludwig K., Mahn H., Marinkovic G., Martens C., Marutzky F., Maslocv M., Meissner D., Mildner N., Miltchev V., Molnar S., Mross D., Müller F., Neumann R., Neumann P., Nölle D., Obier F., Pelzer M., Peters H.-B., Petersen K., Petrosyan A., Petrosyan G., Petrosyan L., Petrosyan V., Petrov A., Pfeiffer S., Piotrowski A., Pisarov Z., Plath T., Pototzki P., Prandolini M. J., Prenting J., Priebe G., Racky B., Ramm T., Rehlich K., Riedel R., Roggli M., Röhling M., Rönsch-Schulenburg J., Rossbach J., Rybnikov V., Schäfer J., Schaffran J., Schlarb H., Schlesselmann G., Schlösser M., Schmid P., Schmidt C., Schmidt-Föhre F., Schmitz M., Schneidmiller E., Schöps A., Scholz M., Schreiber S., Schütt K., Schütz U., Schulte-Schrepping H., Schulz M., Shabunov A., Smirnov P., Sombrowski E., Sorokin A., Sparr B., Spengler J., Staack M., Stadler M., Stechmann C., Steffen B., Stojanovic N., Sychev V., Syresin E., Tanikawa T., Tavella F., Tesch N., Tiedtke K., Tischer M., Treusch R., Tripathi S., Vagin P., Vetrov P., Vilcins S., Vogt M., Zubiaurre Wagner A. d, Wamsat T., Weddig H., Weichert G., Weigelt H., Wentowski N., Wiebers C., Wilksen T., Willner A., Wittenburg K., Wohlenberg T., Wortmann J., Wurth W., Yurkov M., Zagorodnov I., and Zemella J., “ Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator,” New J. Phys. 18, 062002 (2016).10.1088/1367-2630/18/6/062002 DOI

Williams G. P., Electron Binding Energies, X-ray Data Booklet (Lawrence Berkeley National Laboratory, University of California, 2009), Rev. 3.

Cardona M. and Ley L., Photoemission in Solids I, General Principles ( Springer-Verlag, Berlin Heidelberg, 1978), Vol. 26.

Ruberti M., “ Restricted correlation space B-spline ADC approach to molecular ionization: Theory and applications to total photoionization cross-sections,” J. Chem. Theory Comput. 15, 3635–3653 (2019).10.1021/acs.jctc.9b00288 PubMed DOI

Ruberti M., “ Onset of ionic coherence and ultrafast charge dynamics in attosecond molecular ionisation,” Phys. Chem. Chem. Phys. 21, 17584–17604 (2019).10.1039/C9CP03074C PubMed DOI

Ruberti M., “ Quantum electronic coherences by attosecond transient absorption spectroscopy: Ab initio B-spline RCS-ADC study,” Faraday Discuss. 228, 286–311 (2021).10.1039/D0FD00104J PubMed DOI

Ha D. T., Wang Y., Alcamí M., Itälä E., Kooser K., Urpelainen S., Huels M. A., Kukk E., and Martín F., “ Fragmentation dynamics of doubly charged methionine in the gas phase,” J. Phys. Chem. A 118, 1374–1383 (2014).10.1021/jp4113238 PubMed DOI

Itälä E., Kooser K., Rachlew E., Huels M. A., and Kukk E., “ Soft x-ray ionization induced fragmentation of glycine,” J. Chem. Phys. 140, 234305 (2014).10.1063/1.4882648 PubMed DOI

Worth G. A. and Cederbaum L. S., “ Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection,” Annu. Rev. Phys. Chem. 55, 127–158 (2004).10.1146/annurev.physchem.55.091602.094335 PubMed DOI

Cederbaum L., Domcke W., Schirmer J., and Vonniessen W., “ Correlation-effects in the ionization of molecules: Breakdown of the molecular-orbital picture,” Adv. Chem. Phys. 65, 115–159 (1986).10.1002/9780470142899.ch3 DOI

Zhang Y., Biggs J. D., Hua W., Dorfman K. E., and Mukamel S., “ Three-dimensional attosecond resonant stimulated x-ray Raman spectroscopy of electronic excitations in core-ionized glycine,” Phys. Chem. Chem. Phys. 16, 24323–24331 (2014).10.1039/C4CP03361B PubMed DOI

Kowalewski M., Bennett K., Dorfman K. E., and Mukamel S., “ Catching conical intersections in the act: Monitoring transient electronic coherences by attosecond stimulated x-ray Raman signals,” Phys. Rev. Lett. 115, 193003 (2015).10.1103/PhysRevLett.115.193003 PubMed DOI

Keefer D., Schnappinger T., de Vivie-Riedle R., and Mukamel S., “ Visualizing conical intersection passages via vibronic coherence maps generated by stimulated ultrafast x-ray Raman signals,” Proc. Natl. Acad. Sci. U. S. A. 117, 24069–24075 (2020).10.1073/pnas.2015988117 PubMed DOI PMC

Keefer D., Freixas V. M., Song H., Tretiak S., Fernandez-Alberti S., and Mukamel S., “ Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast x-ray spectroscopy,” Chem. Sci. 12, 5286–5294 (2021).10.1039/D0SC06328B PubMed DOI PMC

Delgado J., Lara-Astiaso M., González-Vázquez J., Decleva P., Palacios A., and Martín F., “ Molecular fragmentation as a way to reveal early electron dynamics induced by attosecond pulses,” Faraday Discuss. 228, 349–377 (2021).10.1039/D0FD00121J PubMed DOI

Daubechies I., “ The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).10.1109/18.57199 DOI

Shi Y. and Wang L., “ Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy,” J. Phys. D 38, 3741–3745 (2005).10.1088/0022-3727/38/19/024 DOI

Iijima K., Tanaka K., and Onuma S., “ Main conformer of gaseous glycine: Molecular structure and rotational barrier from electron diffraction data and rotational constants,” J. Mol. Struct. 246, 257–266 (1991).10.1016/0022-2860(91)80132-N DOI

Rosado M. T., Duarte M. L. T., and Fausto R., “ Vibrational spectra of acid and alkaline glycine salts,” Vib. Spectrosc. 16, 35–54 (1998).10.1016/S0924-2031(97)00050-7 DOI

Kumara S., Raia A. K., Singhb V., and Rai S., “ Vibrational spectrum of glycine molecule,” Spectrochim. Acta, Part A 61, 2741–2746 (2005).10.1016/j.saa.2004.09.029 PubMed DOI

Mincigrucci R., Kowalewski M., Rouxel J. R., Bencivenga F., Mukamel S., and Masciovecchio C., “ Impulsive UV-pump/X-ray probe study of vibrational dynamics in glycine,” Sci. Rep. 8, 15466 (2018).10.1038/s41598-018-33607-4 PubMed DOI PMC

Mukamel S., Principles of Nonlinear Optical Spectroscopy ( Oxford University Press, 1999).

Fuller F. D. and Ogilvie J. P., “ Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).10.1146/annurev-physchem-040513-103623 PubMed DOI

Mukamel S., Healion D., Zhang Y., and Biggs J. D., “ Multidimensional attosecond resonant x-ray spectroscopy of molecules: Lessons from the optical regime,” Annu. Rev. Phys. Chem. 64, 101–127 (2013).10.1146/annurev-physchem-040412-110021 PubMed DOI PMC

Uhl D., Wituschek A., Bangert U., Binz M., Callegari C., Fraia M. D., Plekan O., Prince K. C., Cerullo G., Giannessi L., Danailov M., Sansone G., Laarmann T., Michiels R., Mudrich M., Piseri P., Squibb R. J., Feifel R., Stranges S., Stienkemeier F., and Bruder L., “ Improved stabilization scheme for extreme ultraviolet quantum interference experiments,” J. Phys. B 55, 074002 (2022).10.1088/1361-6455/ac5f74 DOI

Geneaux R., Marroux H. J. B., Guggenmos A., Neumark D. M., and Leone S. R., “ Transient absorption spectroscopy using high harmonic generation: A review of ultrafast x-ray dynamics in molecules and solids,” Philos. Trans. R. Soc. A 377, 20170463 (2019).10.1098/rsta.2017.0463 PubMed DOI PMC

Okino T., Furukawa Y., Nabekawa Y., Miyabe S., Eilanlou A. A., Takahashi E. J., Yamanouchi K., and Midorikawa K., “ Direct observation of an attosecond electron wave packet in a nitrogen molecule,” Sci. Adv. 1, e1500356 (2015).10.1126/sciadv.1500356 PubMed DOI PMC

Tzallas P., Skantzakis E., Nikolopoulos L. A. A., Tsakiris G. D., and Charalambidis D., “ Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics,” Nat. Phys. 7, 781–784 (2011).10.1038/nphys2033 DOI

Wituschek A., Bruder L., Allaria E., Bangert U., Binz M., Borghes R., Callegari C., Cerullo G., Cinquegrana P., Giannessi L., Danailov M., Demidovich A., Di Fraia M., Drabbels M., Feifel R., Laarmann T., Michiels R., Mirian N. S., Mudrich M., Nikolov I., O’Shea F. H., Penco G., Piseri P., Plekan O., Prince K. C., Przystawik A., Ribič P. R., Sansone G., Sigalotti P., Spampinati S., Spezzani C., Squibb R. J., Stranges S., Uhl D., and Stienkemeier F., “ Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).10.1038/s41467-020-14721-2 PubMed DOI PMC

Young L., Ueda K., Gühr M., Bucksbaum P. H., Simon M., Mukamel S., Rohringer N., Prince K. C., Masciovecchio C., Meyer M., Rudenko A., Rolles D., Bostedt C., Fuchs M., Reis D. A., Santra R., Kapteyn H., Murnane M., Ibrahim H., Légaré F., Vrakking M., Isinger M., Kroon D., Gisselbrecht M., L'Huillier A., Wörner H. J., and Leone S. R., “ Roadmap of ultrafast x-ray atomic and molecular physics,” J. Phys. B 51, 032003 (2018).10.1088/1361-6455/aa9735 DOI

Lilly J. M. and Olhede S. C., “ Generalized Morse wavelets as a superfamily of analytic wavelets,” IEEE Trans. Signal Process. 60, 6036–6041 (2012).10.1109/TSP.2012.2210890 DOI

Torrence C. and Compo G. P., “ A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).10.1175/1520-0477(1998)079<3C0061:APGTWA>3E2.0.CO;2 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...