Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
36389279
PubMed Central
PMC9646253
DOI
10.1063/4.0000165
PII: 4.0000165
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of ( - 0.3 ± 0.1 ) π ≤ ϕ ≤ ( 0.1 ± 0.2 ) π and 18.2 - 1.4 + 1.7 ≤ T ≤ 23.9 - 1.1 + 1.2 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.
Department of Physics Imperial College London Prince Consort Road London SW7 2AZ United Kingdom
Department of Physics University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany
Deutsches Elektronen Synchrotron DESY Notkestr 85 22607 Hamburg Germany
European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
Faculty of Electrical Engineering Helmut Schmidt University Holstenhofweg 85 22043 Hamburg Germany
Helmholtz Zentrum Berlin für Materialien und Energie Albert Einstein Straße 15 12489 Berlin Germany
See more in PubMed
Weinkauf R., Schanen P., Yang D., Soukara S., and Schlag E. W., “ Elementary processes in peptides: Electron mobility and dissociation in peptide cations in the gas phase,” J. Phys. Chem. 99, 11255–11265 (1995).10.1021/j100028a029 DOI
Wörner H. J., Arrell C. A., Banerji N., Cannizzo A., Chergui M., Das A. K., Hamm P., Keller U., Kraus P. M., Liberatore E., Lopez-Tarifa P., Lucchini M., Meuwly M., Milne C., Moser J.-E., Rothlisberger U., Smolentsev G., Teuscher J., van Bokhoven J. A., and Wenger O., “ Charge migration and charge transfer in molecular systems,” Struct. Dyn. 4, 061508 (2017).10.1063/1.4996505 PubMed DOI PMC
Calegari F., Ayuso D., Trabattoni A., Belshaw L., Camillis S. D., Anumula S., Frassetto F., Poletto L., Palacios A., Decleva P., Greenwood J. B., Martín F., and Nisoli M., “ Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).10.1126/science.1254061 PubMed DOI
Calegari F., Trabattoni A., Palacios A., Ayuso D., Castrovilli M. C., Greenwood J. B., Decleva P., Martín F., and Nisoli M., “ Charge migration induced by attosecond pulses in bio-relevant molecules,” J. Phys. B 49, 142001 (2016).10.1088/0953-4075/49/14/142001 DOI
Schwickert D., Ruberti M., Kolorenč P., Usenko S., Przystawik A., Baev K., Baev I., Braune M., Bocklage L., Czwalinna M. K., Deinert S., Düsterer S., Hans A., Hartmann G., Haunhorst C., Kuhlmann M., Palutke S., Röhlsberger R., Rönsch-Schulenburg J., Schmidt P., Toleikis S., Viefhaus J., Martins M., Knie A., Kip D., Averbukh V., Marangos J. P., and Laarmann T., “ Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time,” Sci. Adv. 8, eabn6848 (2022).10.1126/sciadv.abn6848 PubMed DOI PMC
Arnold C., Vendrell O., and Santra R., “ Electronic decoherence following photoionization: Full quantum-dynamical treatment of the influence of nuclear motion,” Phys. Rev. A 95, 033425 (2017).10.1103/PhysRevA.95.033425 DOI
Vacher M., Bearpark M. J., Robb M. A., and Malhado J. P., “ Electron dynamics upon ionization of polyatomic molecules: Coupling to quantum nuclear motion and decoherence,” Phys. Rev. Lett. 118, 083001 (2017).10.1103/PhysRevLett.118.083001 PubMed DOI
Lara-Astiaso M., Palacios A., Decleva P., Tavernelli I., and Martín F., “ Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine,” Chem. Phys. Lett. 683, 357–364 (2017).10.1016/j.cplett.2017.05.008 DOI
Despré V., Marciniak A., Loriot V., Galbraith M. C. E., Rouzée A., Vrakking M. J. J., Lépine F., and Kuleff A. I., “ Attosecond hole migration in benzene molecules surviving nuclear motion,” J. Phys. Chem. Lett. 6, 426–431 (2015).10.1021/jz502493j PubMed DOI
Laarmann T., Shchatsinin I., Singh P., Zhavoronkov N., Gerhards M., Schulz C. P., and Hertel I. V., “ Coherent control of bond breaking in amino acid complexes with tailored femtosecond pulses,” J. Chem. Phys. 127, 201101 (2007).10.1063/1.2806029 PubMed DOI
Laarmann T., Shchatsinin I., Singh P., Zhavoronkov N., Schulz C. P., and Hertel I. V., “ Femtosecond pulse shaping as analytic tool in mass spectrometry of complex polyatomic systems,” J. Phys. B 41, 074005 (2008).10.1088/0953-4075/41/7/074005 DOI
Jakob M. A., Namboodiri M., Prandolini M. J., and Laarmann T., “ Generation and characterization of tailored MIR waveforms for steering molecular dynamics,” Opt. Express 27, 26979–26988 (2019).10.1364/OE.27.026979 PubMed DOI
Mayer D., Lever F., Picconi D., Metje J., Alisauskas S., Calegari F., Düsterer S., Ehlert C., Feifel R., Niebuhr M., Manschwetus B., Kuhlmann M., Mazza T., Robinson M. S., Squibb R. J., Trabattoni A., Wallner M., Saalfrank P., Wolf T. J. A., and Gühr M., “ Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy,” Nat. Commun. 13, 198 (2022).10.1038/s41467-021-27908-y PubMed DOI PMC
Hall J. C., “ Review: Glycine,” J. Parenter. Enteral Nutr. 22, 393–398 (1998).10.1177/0148607198022006393 PubMed DOI
Javadpour M. M., Eilers M., Groesbeek M., and Smith S. O., “ Helix packing in polytopic membrane proteins: Role of glycine in transmembrane helix association,” Biophys. J. 77, 1609–1618 (1999).10.1016/S0006-3495(99)77009-8 PubMed DOI PMC
López-Corcuera B., Geerlings A., and Aragón C., “ Glycine neurotransmitter transporters: An update,” Mol. Membr. Biol. 18(1), 13–20 (2001).10.1080/09687680010028762 PubMed DOI
Plekan O., Feyer V., Richter R., Coreno M., de Simone M., Prince K. C., and Carravetta V., “ Investigation of the amino acids glycine, proline, and methionine by photoemission spectroscopy,” J. Phys. Chem. A 111, 10998–11005 (2007).10.1021/jp075384v PubMed DOI
Elsila J. E., Glavin D. P., and Dworkin J. P., “ Cometary glycine detected in samples returned by stardust,” Meteoritics Planet. Sci. 44, 1323–1330 (2009).10.1111/j.1945-5100.2009.tb01224.x DOI
Altwegg K., Balsiger H., Bar-Nun A., Berthelier J.-J., Bieler A., Bochsler P., Briois C., Calmonte U., Combi M. R., Cottin H., Keyser J. D., Dhooghe F., Fiethe B., Fuselier S. A., Gasc S., Gombosi T. I., Hansen K. C., Haessig M., Jäckel A., Kopp E., Korth A., Roy L. L., Mall U., Marty B., Mousis O., Owen T., Rème H., Rubin M., Sémon T., Tzou C.-Y., Waite J. H., and Wurz P., “ Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67p/Churyumov-Gerasimenko,” Sci. Adv. 2, e1600285 (2016).10.1126/sciadv.1600285 PubMed DOI PMC
Barillot T., Alexander O., Cooper B., Driver T., Garratt D., Li S., Al Haddad A., Sanchez-Gonzalez A., Agåker M., Arrell C., Bearpark M. J., Berrah N., Bostedt C., Bozek J., Brahms C., Bucksbaum P. H., Clark A., Doumy G., Feifel R., Frasinski L. J., Jarosch S., Johnson A. S., Kjellsson L., Kolorenč P., Kumagai Y., Larsen E. W., Matia-Hernando P., Robb M., Rubensson J.-E., Ruberti M., Sathe C., Squibb R. J., Tan A., Tisch J. W. G., Vacher M., Walke D. J., Wolf T. J. A., Wood D., Zhaunerchyk V., Walter P., Osipov T., Marinelli A., Maxwell T. J., Coffee R., Lutman A. A., Averbukh V., Ueda K., Cryan J. P., and Marangos J. P., “ Correlation-driven transient hole dynamics resolved in space and time in the isopropanol molecule,” Phys. Rev. X 11, 031048 (2021).10.1103/PhysRevX.11.031048 DOI
Neville J. J., Zheng Y., and Brion C. E., “ Glycine valence orbital electron densities: Comparison of electron momentum spectroscopy experiments with Hartree Fock and density functional theories,” J. Am. Chem. Soc. 118, 10533–10544 (1996).10.1021/ja9613015 DOI
Bonifacio R., De Salvo L., Pierini P., Piovella N., and Pellegrini C., “ Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).10.1103/PhysRevLett.73.70 PubMed DOI
Saldin E. L., Schneidmiller E. A., and Yurkov M. V., The Physics of Free Electron Lasers ( Springer-Verlag, Berlin, Heidelberg, 2000).
Tiedtke K., Feldhaus J., Hahn U., Jastrow U., Nunez T., Tschentscher T., Bobashev S. V., Sorokin A. A., Hastings J. B., Möller S., Cibik L., Gottwald A., Hoehl A., Kroth U., Krumrey M., Schöppe H., Ulm G., and Richter M., “ Gas detectors for x-ray lasers,” J. Appl. Phys. 103, 094511 (2008).10.1063/1.2913328 DOI
Rönsch-Schulenburg J., Hass E., Lockmann N., Plath T., Rehders M., Roßbach J., Brenner G., Dziarzhytski S., Golz T., Schlarb H., Schmidt B., Schneidmiller E., Schreiber S., Steffen B., Stojanovic N., Wunderlich S., and Yurkov M., in Proceedings of the 36th International Free Electron Laser Conference FEL2014, edited by J. Chrin, S. Reiche, and V. R. W. Schaa (PSI, 2014), pp. 342–345.
Usenko S., Schwickert D., Przystawik A., Baev K., Baev I., Braune M., Bocklage L., Czwalinna M. K., Deinert S., Düsterer S., Hans A., Hartmann G., Haunhorst C., Kuhlmann M., Palutke S., Röhlsberger R., Rönsch-Schulenburg J., Schmidt P., Skruszewicz S., Toleikis S., Viefhaus J., Martins M., Knie A., Kip D., and Laarmann T., “ Auger electron wave packet interferometry on extreme timescales with coherent soft x-rays,” J. Phys. B 53, 244008 (2020).10.1088/1361-6455/abc661 DOI
Savchenko V., Gel'mukhanov F., Laarmann T., Polyutov S. P., and Kimberg V., “ Dynamical phase shift in x-ray absorption and ionization spectra by two delayed x-ray laser fields,” Phys. Rev. A 104, 013114 (2021).10.1103/PhysRevA.104.013114 DOI
Usenko S., Przystawik A., Jakob M. A., Lazzarino L. L., Brenner G., Toleikis S., Haunhorst C., Kip D., and Laarmann T., “ Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nat. Commun. 8, 15626 (2017).10.1038/ncomms15626 PubMed DOI PMC
Lazzarino L. L., Kazemi M. M., Haunhorst C., Becker C., Hartwell S., Jakob M. A., Przystawik A., Usenko S., Kip D., Hartl I., and Laarmann T., “ Shaping femtosecond laser pulses at short wavelength with grazing-incidence optics,” Opt. Express 27, 13479–13491 (2019).10.1364/OE.27.013479 PubMed DOI
Hartwell S., Azima A., Haunhorst C., Kazemi M., Namboodiri M., Przystawik A., Schwickert D., Skruszewicz S., Kip D., Drescher M., and Laarmann T., “ Full characterization of a phase-locked DUV double pulse generated in an all-reflective shaping setup working under grazing incidence in a broad spectral range,” Appl. Phys. B 128, 2 (2021).10.1007/s00340-021-07722-6 DOI
Usenko S., Przystawik A., Lazzarino L. L., Jakob M. A., Jacobs F., Becker C., Haunhorst C., Kip D., and Laarmann T., “ Split-and-delay unit for FEL interferometry in the XUV spectral range,” Appl. Sci. 7, 544 (2017).10.3390/app7060544 DOI
Skruszewicz S., Przystawik A., Schwickert D., Sumfleth M., Namboodiri M., Hilbert V., Klas R., Gierschke P., Schuster V., Vorobiov A., Haunhorst C., Kip D., Limpert J., Rothhardt J., and Laarmann T., “ Table-top interferometry on extreme time and wavelength scales,” Opt. Express 29, 40333–40344 (2021).10.1364/OE.446563 PubMed DOI
Kuleff A. I., Breidbach J., and Cederbaum L. S., “ Multielectron wave-packet propagation: General theory and application,” J. Chem. Phys. 123, 044111 (2005).10.1063/1.1961341 PubMed DOI
Cannington P. and Ham N. S., “ He(I) and He(II) photoelectron spectra of glycine and related molecules,” J. Electron Spectrosc. Relat. Phenom. 32, 139–151 (1983).10.1016/0368-2048(83)85092-0 DOI
Cooper B., Kolorenč P., Frasinski L. J., Averbukh V., and Marangos J. P., “ Analysis of a measurement scheme for ultrafast hole dynamics by few femtosecond resolution x-ray pump-probe auger spectroscopy,” Faraday Discuss. 171, 93–111 (2014).10.1039/C4FD00051J PubMed DOI
Cederbaum L. and Zobeley J., “ Ultrafast charge migration by electron correlation,” Chem. Phys. Lett. 307, 205–210 (1999).10.1016/S0009-2614(99)00508-4 DOI
Kuleff A. I. and Cederbaum L. S., “ Charge migration in different conformers of glycine: The role of nuclear geometry,” Chem. Phys. 338, 320–328 (2007).10.1016/j.chemphys.2007.04.012 DOI
Faatz B., Plönjes E., Ackermann S., Agababyan A., Asgekar V., Ayvazyan V., Baark S., Baboi N., Balandin V., von Bargen N., Bican Y., Bilani O., Bödewadt J., Böhnert M., Böspflug R., Bonfigt S., Bolz H., Borges F., Borkenhagen O., Brachmanski M., Braune M., Brinkmann A., Brovko O., Bruns T., Castro P., Chen J., Czwalinna M. K., Damker H., Decking W., Degenhardt M., Delfs A., Delfs T., Deng H., Dressel M., Duhme H.-T., Düsterer S., Eckoldt H., Eislage A., Felber M., Feldhaus J., Gessler P., Gibau M., Golubeva N., Golz T., Gonschior J., Grebentsov A., Grecki M., Grün C., Grunewald S., Hacker K., Hänisch L., Hage A., Hans T., Hass E., Hauberg A., Hensler O., Hesse M., Heuck K., Hidvegi A., Holz M., Honkavaara K., Höppner H., Ignatenko A., Jäger J., Jastrow U., Kammering R., Karstensen S., Kaukher A., Kay H., Keil B., Klose K., Kocharyan V., Köpke M., Körfer M., Kook W., Krause B., Krebs O., Kreis S., Krivan F., Kuhlmann J., Kuhlmann M., Kube G., Laarmann T., Lechner C., Lederer S., Leuschner A., Liebertz D., Liebing J., Liedtke A., Lilje L., Limberg T., Lipka D., Liu B., Lorbeer B., Ludwig K., Mahn H., Marinkovic G., Martens C., Marutzky F., Maslocv M., Meissner D., Mildner N., Miltchev V., Molnar S., Mross D., Müller F., Neumann R., Neumann P., Nölle D., Obier F., Pelzer M., Peters H.-B., Petersen K., Petrosyan A., Petrosyan G., Petrosyan L., Petrosyan V., Petrov A., Pfeiffer S., Piotrowski A., Pisarov Z., Plath T., Pototzki P., Prandolini M. J., Prenting J., Priebe G., Racky B., Ramm T., Rehlich K., Riedel R., Roggli M., Röhling M., Rönsch-Schulenburg J., Rossbach J., Rybnikov V., Schäfer J., Schaffran J., Schlarb H., Schlesselmann G., Schlösser M., Schmid P., Schmidt C., Schmidt-Föhre F., Schmitz M., Schneidmiller E., Schöps A., Scholz M., Schreiber S., Schütt K., Schütz U., Schulte-Schrepping H., Schulz M., Shabunov A., Smirnov P., Sombrowski E., Sorokin A., Sparr B., Spengler J., Staack M., Stadler M., Stechmann C., Steffen B., Stojanovic N., Sychev V., Syresin E., Tanikawa T., Tavella F., Tesch N., Tiedtke K., Tischer M., Treusch R., Tripathi S., Vagin P., Vetrov P., Vilcins S., Vogt M., Zubiaurre Wagner A. d, Wamsat T., Weddig H., Weichert G., Weigelt H., Wentowski N., Wiebers C., Wilksen T., Willner A., Wittenburg K., Wohlenberg T., Wortmann J., Wurth W., Yurkov M., Zagorodnov I., and Zemella J., “ Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator,” New J. Phys. 18, 062002 (2016).10.1088/1367-2630/18/6/062002 DOI
Williams G. P., Electron Binding Energies, X-ray Data Booklet (Lawrence Berkeley National Laboratory, University of California, 2009), Rev. 3.
Cardona M. and Ley L., Photoemission in Solids I, General Principles ( Springer-Verlag, Berlin Heidelberg, 1978), Vol. 26.
Ruberti M., “ Restricted correlation space B-spline ADC approach to molecular ionization: Theory and applications to total photoionization cross-sections,” J. Chem. Theory Comput. 15, 3635–3653 (2019).10.1021/acs.jctc.9b00288 PubMed DOI
Ruberti M., “ Onset of ionic coherence and ultrafast charge dynamics in attosecond molecular ionisation,” Phys. Chem. Chem. Phys. 21, 17584–17604 (2019).10.1039/C9CP03074C PubMed DOI
Ruberti M., “ Quantum electronic coherences by attosecond transient absorption spectroscopy: Ab initio B-spline RCS-ADC study,” Faraday Discuss. 228, 286–311 (2021).10.1039/D0FD00104J PubMed DOI
Ha D. T., Wang Y., Alcamí M., Itälä E., Kooser K., Urpelainen S., Huels M. A., Kukk E., and Martín F., “ Fragmentation dynamics of doubly charged methionine in the gas phase,” J. Phys. Chem. A 118, 1374–1383 (2014).10.1021/jp4113238 PubMed DOI
Itälä E., Kooser K., Rachlew E., Huels M. A., and Kukk E., “ Soft x-ray ionization induced fragmentation of glycine,” J. Chem. Phys. 140, 234305 (2014).10.1063/1.4882648 PubMed DOI
Worth G. A. and Cederbaum L. S., “ Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection,” Annu. Rev. Phys. Chem. 55, 127–158 (2004).10.1146/annurev.physchem.55.091602.094335 PubMed DOI
Cederbaum L., Domcke W., Schirmer J., and Vonniessen W., “ Correlation-effects in the ionization of molecules: Breakdown of the molecular-orbital picture,” Adv. Chem. Phys. 65, 115–159 (1986).10.1002/9780470142899.ch3 DOI
Zhang Y., Biggs J. D., Hua W., Dorfman K. E., and Mukamel S., “ Three-dimensional attosecond resonant stimulated x-ray Raman spectroscopy of electronic excitations in core-ionized glycine,” Phys. Chem. Chem. Phys. 16, 24323–24331 (2014).10.1039/C4CP03361B PubMed DOI
Kowalewski M., Bennett K., Dorfman K. E., and Mukamel S., “ Catching conical intersections in the act: Monitoring transient electronic coherences by attosecond stimulated x-ray Raman signals,” Phys. Rev. Lett. 115, 193003 (2015).10.1103/PhysRevLett.115.193003 PubMed DOI
Keefer D., Schnappinger T., de Vivie-Riedle R., and Mukamel S., “ Visualizing conical intersection passages via vibronic coherence maps generated by stimulated ultrafast x-ray Raman signals,” Proc. Natl. Acad. Sci. U. S. A. 117, 24069–24075 (2020).10.1073/pnas.2015988117 PubMed DOI PMC
Keefer D., Freixas V. M., Song H., Tretiak S., Fernandez-Alberti S., and Mukamel S., “ Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast x-ray spectroscopy,” Chem. Sci. 12, 5286–5294 (2021).10.1039/D0SC06328B PubMed DOI PMC
Delgado J., Lara-Astiaso M., González-Vázquez J., Decleva P., Palacios A., and Martín F., “ Molecular fragmentation as a way to reveal early electron dynamics induced by attosecond pulses,” Faraday Discuss. 228, 349–377 (2021).10.1039/D0FD00121J PubMed DOI
Daubechies I., “ The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).10.1109/18.57199 DOI
Shi Y. and Wang L., “ Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy,” J. Phys. D 38, 3741–3745 (2005).10.1088/0022-3727/38/19/024 DOI
Iijima K., Tanaka K., and Onuma S., “ Main conformer of gaseous glycine: Molecular structure and rotational barrier from electron diffraction data and rotational constants,” J. Mol. Struct. 246, 257–266 (1991).10.1016/0022-2860(91)80132-N DOI
Rosado M. T., Duarte M. L. T., and Fausto R., “ Vibrational spectra of acid and alkaline glycine salts,” Vib. Spectrosc. 16, 35–54 (1998).10.1016/S0924-2031(97)00050-7 DOI
Kumara S., Raia A. K., Singhb V., and Rai S., “ Vibrational spectrum of glycine molecule,” Spectrochim. Acta, Part A 61, 2741–2746 (2005).10.1016/j.saa.2004.09.029 PubMed DOI
Mincigrucci R., Kowalewski M., Rouxel J. R., Bencivenga F., Mukamel S., and Masciovecchio C., “ Impulsive UV-pump/X-ray probe study of vibrational dynamics in glycine,” Sci. Rep. 8, 15466 (2018).10.1038/s41598-018-33607-4 PubMed DOI PMC
Mukamel S., Principles of Nonlinear Optical Spectroscopy ( Oxford University Press, 1999).
Fuller F. D. and Ogilvie J. P., “ Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66, 667–690 (2015).10.1146/annurev-physchem-040513-103623 PubMed DOI
Mukamel S., Healion D., Zhang Y., and Biggs J. D., “ Multidimensional attosecond resonant x-ray spectroscopy of molecules: Lessons from the optical regime,” Annu. Rev. Phys. Chem. 64, 101–127 (2013).10.1146/annurev-physchem-040412-110021 PubMed DOI PMC
Uhl D., Wituschek A., Bangert U., Binz M., Callegari C., Fraia M. D., Plekan O., Prince K. C., Cerullo G., Giannessi L., Danailov M., Sansone G., Laarmann T., Michiels R., Mudrich M., Piseri P., Squibb R. J., Feifel R., Stranges S., Stienkemeier F., and Bruder L., “ Improved stabilization scheme for extreme ultraviolet quantum interference experiments,” J. Phys. B 55, 074002 (2022).10.1088/1361-6455/ac5f74 DOI
Geneaux R., Marroux H. J. B., Guggenmos A., Neumark D. M., and Leone S. R., “ Transient absorption spectroscopy using high harmonic generation: A review of ultrafast x-ray dynamics in molecules and solids,” Philos. Trans. R. Soc. A 377, 20170463 (2019).10.1098/rsta.2017.0463 PubMed DOI PMC
Okino T., Furukawa Y., Nabekawa Y., Miyabe S., Eilanlou A. A., Takahashi E. J., Yamanouchi K., and Midorikawa K., “ Direct observation of an attosecond electron wave packet in a nitrogen molecule,” Sci. Adv. 1, e1500356 (2015).10.1126/sciadv.1500356 PubMed DOI PMC
Tzallas P., Skantzakis E., Nikolopoulos L. A. A., Tsakiris G. D., and Charalambidis D., “ Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics,” Nat. Phys. 7, 781–784 (2011).10.1038/nphys2033 DOI
Wituschek A., Bruder L., Allaria E., Bangert U., Binz M., Borghes R., Callegari C., Cerullo G., Cinquegrana P., Giannessi L., Danailov M., Demidovich A., Di Fraia M., Drabbels M., Feifel R., Laarmann T., Michiels R., Mirian N. S., Mudrich M., Nikolov I., O’Shea F. H., Penco G., Piseri P., Plekan O., Prince K. C., Przystawik A., Ribič P. R., Sansone G., Sigalotti P., Spampinati S., Spezzani C., Squibb R. J., Stranges S., Uhl D., and Stienkemeier F., “ Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses,” Nat. Commun. 11, 883 (2020).10.1038/s41467-020-14721-2 PubMed DOI PMC
Young L., Ueda K., Gühr M., Bucksbaum P. H., Simon M., Mukamel S., Rohringer N., Prince K. C., Masciovecchio C., Meyer M., Rudenko A., Rolles D., Bostedt C., Fuchs M., Reis D. A., Santra R., Kapteyn H., Murnane M., Ibrahim H., Légaré F., Vrakking M., Isinger M., Kroon D., Gisselbrecht M., L'Huillier A., Wörner H. J., and Leone S. R., “ Roadmap of ultrafast x-ray atomic and molecular physics,” J. Phys. B 51, 032003 (2018).10.1088/1361-6455/aa9735 DOI
Lilly J. M. and Olhede S. C., “ Generalized Morse wavelets as a superfamily of analytic wavelets,” IEEE Trans. Signal Process. 60, 6036–6041 (2012).10.1109/TSP.2012.2210890 DOI
Torrence C. and Compo G. P., “ A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).10.1175/1520-0477(1998)079<3C0061:APGTWA>3E2.0.CO;2 DOI