Survival fluctuation is linked to precipitation variation during staging in a migratory shorebird

. 2022 Nov 18 ; 12 (1) : 19830. [epub] 20221118

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36400908

Grantová podpora
20-00648S Grantová Agentura České Republiky

Odkazy

PubMed 36400908
PubMed Central PMC9674593
DOI 10.1038/s41598-022-24141-5
PII: 10.1038/s41598-022-24141-5
Knihovny.cz E-zdroje

Understanding how weather conditions affect animal populations is essential to foresee population changes in times of global climate shifts. However, assessing year-round weather impacts on demographic parameters is hampered in migratory animals due to often unknown occurrence in space and time. We addressed this by coupling tracking and weather data to explain extensive variation in apparent survival across 19 years in a northern European population of little ringed plovers (Charadrius dubius). Over 90% (n = 21) of tracked individuals followed migration routes along the Indo-European flyway to south India. Building on capture-recapture histories of nearly 1400 individuals, we found that between-year variation in precipitation during post-breeding staging in northern South Asia explained 47% of variation in apparent adult survival. Overall, the intensity of the monsoon in South Asia explained 31-33% of variability in apparent survival. In contrast, weather conditions in breeding, final non-breeding and pre-breeding quarters appeared less important in this species. The integration of multi-source data seems essential for identifying key regions and periods limiting population growth, for forecasting future changes and targeting conservation efforts.

Zobrazit více v PubMed

Marra P, Hobson KA, Holmes RT. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science. 1998;282:1884–1886. PubMed

Korslund L, Steen H. Small rodent winter survival: Snow conditions limit access to food resources. J. Anim. Ecol. 2009;75:423–436. PubMed

Both C, Bouwhuis S, Lessells CM, Visser ME. Climate change and population declines in a long-distance migratory bird. Nature. 2006;441:81–83. PubMed

Rughetti M, Festa-Bianchet M. Effects of spring–summer temperature on body mass of chamois. J. Mammal. 2012;93:1301–1307.

Davidson J, Andrewartha H. The influence of rainfall, evaporation and atmospheric temperature on fluctuations in the size of a natural population of Thrips imaginis (Thysanoptera) J. Anim. Ecol. 1948;17:200–222.

Sillett TS, Holmes RT, Sherry TW. Impacts of a global climate cycle on population dynamics of a migratory songbird. Science. 2000;288:2040–2043. PubMed

SÆther BE, Sutherland WJ, Engen S. Climate influences on avian population dynamics. Adv. Ecol. Res. 2004;35:185–209.

Frederiksen M, Daunt F, Harris M, Wanless S. The demographic impact of extreme events: Stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 2008;77:1020–1029. PubMed

Cox AR, Robertson RJ, Rendell WB, Bonier F. Population decline in tree swallows (Tachycineta bicolor) linked to climate change and inclement weather on the breeding ground. Oecologia. 2020;192:713–722. PubMed

Peach W, Baillie S, Underhill L. Survival of British Sedge Warblers in relation to west African rainfall. Ibis. 1991;133:300–305.

Altwegg R, Dummermuth S, Anholt BR, Flatt T. Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos. 2005;110:55–66.

Woodworth BK, Wheelwright NT, Newman AE, Schaub M, Norris DR. Winter temperatures limit population growth rate of a migratory songbird. Nat. Commun. 2017;8:14812. PubMed PMC

Ådahl E, Lundberg P, Jonzén N. From climate change to population change: The need to consider annual life cycles. Glob. Change Biol. 2006;12:1627–1633.

Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM. A call for full annual cycle research in animal ecology. Biol. Lett. 2015;11:20150552. PubMed PMC

Telenský T, Klvaňa P, Jelínek M, Cepák J, Reif J. The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Sci. Rep. 2020;10:17592. PubMed PMC

Dybala KE, Eadie JM, Gardali T, Seavy NE, Herzog MP. Projecting demographic responses to climate change: Adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population. Glob. Chang. Biol. 2013;19:2688–2697. PubMed

Gullett P, Evans KL, Robinson RA, Hatchwell BJ. Climate change and annual survival in a temperate passerine: Partitioning seasonal effects and predicting future patterns. Oikos. 2014;123:389–400.

Selwood KE, McGeoch MA, Mac Nally R. The effects of climate change and land-use change on demographic rates and population viability. Biol. Rev. 2015;90:837–853. PubMed

Bridge ES, et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. Bioscience. 2011;61:689–698.

van Bemmelen RSA, et al. Red-necked phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies. Front. Ecol. Evol. 2019;7:86.

Jiguet F, et al. Unravelling migration connectivity reveals unsustainable hunting of the declining ortolan bunting. Sci. Adv. 2019;5:eaau2642. PubMed PMC

Stutchbury BJM, et al. Tracking long-distance songbird migration by using geolocators. Science. 2009;323:896. PubMed

Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, Van Bommel FPJ. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 2006;131:93–105.

Sandvik H, Erikstad KE, Barrett RT, Yoccoz NG. The effect of climate on adult survival in five species of North Atlantic seabirds. J. Anim. Ecol. 2005;74:817–831.

BirdLife International and NatureServe. Bird species distribution maps of the world. (2014).

Hedenström A, Klaassen RHG, Åkesson S. Migration of the little ringed plover Charadrius dubius breeding in South Sweden tracked by geolocators. Bird Study. 2013;60:466–474.

Fransson, T., Österblom, H. & Hall-Karlsson, S. Svensk ringmärkningsatlas. (2008).

Pakanen V, Lampila S, Arppe H, Valkama J. Estimating sex specific apparent survival and dispersal of Little Ringed Plovers (Charadrius dubius) Ornis Fenn. 2015;92:52.

Jarošík V, Honěk A, Magarey R, Skuhrovec J. Developmental database for phenology models: Related insect and mite species have similar thermal requirements. J. Econ. Entomol. 2011;104:1870–1876. PubMed

Cramp J. Handbook of the Birds of Europe, the Middle East and North Africa. Oxford University Press; 1992.

Leyrer J, et al. Mortality within the annual cycle: Seasonal survival patterns in Afro-Siberian Red Knots Calidris canutus canutus. J. Ornithol. 2013;154:933–943.

Norris RD, Marra PP. Seasonal interactions, habitat quality, an population dynamics in migratory birds. Condor. 2007;109:535–547.

Schmaljohann H, Eikenaar C, Sapir N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol. Rev. 2022;97:1231–1252. PubMed

Doyle S, et al. Temperature and precipitation at migratory grounds influence demographic trends of an Arctic-breeding bird. Glob. Change Biol. 2020;26:5447–5458. PubMed

Rockwell SM, et al. Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia. 2017;183:715–726. PubMed

Insley H, Peach W, Swann B, Etheridge B. Survival rates of Redshank Tringa totanus wintering on the Moray Firth. Bird Study. 1997;44:277–289.

Duriez O, Ens BJ, Choquet R, Pradel R, Klaassen M. Comparing the seasonal survival of resident and migratory oystercatchers: Carry-over effects of habitat quality and weather conditions. Oikos. 2012;121:862–873.

Cook ASCP, et al. Temperature and density influence survival in a rapidly declining migratory shorebird. Biol. Conserv. 2021;260:109198.

Pearce-Higgins JW, Yalden D, Dougall T, Beale CM. Does climate change explain the decline of a trans-Saharan Afro-Palaearctic migrant? Oecologia. 2009;159:649–659. PubMed

Weiser EL, et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk. 2018;135:29–43.

Piersma T, Baker A. Life history characteristics and the conservation of migratory shorebirds. In: Gosling L, Sutherland W, editors. Behaviour and Conservation. Cambridge University Press; 2000. pp. 105–124.

Conklin JR, Senner NR, Battley PF, Piersma T. Extreme migration and the individual quality spectrum. J. Avian Biol. 2017;48:19–36.

Méndez V, Alves JA, Gill JA, Gunnarsson TG. Patterns and processes in shorebird survival rates: A global review. Ibis (Lond.) 2018;160:723–741.

Roche EA, et al. Range-wide piping plover survival: Correlated patterns and temporal declines. J. Wildl. Manage. 2010;74:1784–1791.

Skagen SK, Knopf FL. Toward conservation of midcontinental shorebird migrations. Conserv. Biol. 1993;7:533–541.

Kasahara S, Moritomo G, Kitamura W, Imanishi S, Azuma N. Rice fields along the East Asian-Australasian flyway are important habitats for an inland wader’s migration. Sci. Rep. 2020;10:4118. PubMed PMC

Studds CE, Marra PP. Linking fluctuations in rainfall to nonbreeding season performance in a long-distance migratory bird, Setophaga ruticilla. Clim. Res. 2007;35:115–122.

Newton I. Can conditions experienced during migration limit the population levels of birds? J. Ornithol. 2006;147:146–166.

Anderson AM, et al. Drought at a coastal wetland affects refuelling and migration strategies of shorebirds. Oecologia. 2021;197:661–674. PubMed PMC

Rakhimberdiev E, et al. Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nat. Commun. 2018;9:4263. PubMed PMC

Wikelski M, et al. Costs of migration in free-flying songbirds. Nature. 2003;423:704. PubMed

Meissner W. Ageing and sexing the curonicus subspecies of the Little Ringed Plover Charadrius dubius. Wader Study Gr. Bull. 2007;113:28–31.

Giorgi F. Climate change hot-spots. Geophys. Res. Lett. 2006;33:L08707.

Almazroui M, Saeed S, Saeed F, Islam MN, Ismail M. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst. Environ. 2020;4:297–320.

Lisovski S, et al. The Indo-European flyway: Opportunities and constraints reflected by Common Rosefinches breeding across Europe. J. Biogeogr. 2021;48:1255–1266.

Lislevand T, et al. Red-spotted Bluethroats Luscinia s. svecica migrate along the Indo-European flyway: A geolocator study. Bird Study. 2015;62:508–515.

Brlík V, Ilieva M, Lisovski S, Voigt CC, Procházka P. First insights into the migration route and migratory connectivity of the Paddyfield Warbler using geolocator tagging and stable isotope analysis. J. Ornithol. 2018;159:879–882.

Wernham C, et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. Poyser; 2002.

Saurola P, Valkama J, Velmala W. The Finnish Bird Ringing Atlas. Finnish Museum of Natural History and the Ministry of Environment; 2013.

Bairlein F, et al. Atlas des Vogelzugs—Ringfunde Deutscher Brut- und Gastvögel. AULA-Verlag GmbH; 2014.

Salewski V, Hochachka WM, Fiedler W. Multiple weather factors affect apparent survival of European Passerine birds. PLoS One. 2013;8:e59110. PubMed PMC

Schaub M, Jakober H, Stauber W. Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine. Oecologia. 2011;167:445–459. PubMed

Brlík V, et al. Weak effects of geolocators on small birds: A meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 2020;89:207–220. PubMed

Weiser EL, et al. Effects of geolocators on hatching success, return rates, breeding movements, and change in body mass in 16 species of Arctic-breeding shorebirds. Mov. Ecol. 2016;4:12. PubMed PMC

Lisovski, S., Sumner, M. D., & Wotherspoon, S. J. TwGeos: Basic data processing for light based geolocation archival tags. 2015. https://github.com/slisovski/TwGeos

Lisovski S, Hahn S. GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol. Evol. 2012;3:1055–1059.

Ekstrom PA. An advance in geolocation by light. Mem. Natl Inst. Polar Res. 2004;58:210–226.

Brunsdon, C. & Chen, H. GISTools: Some further GIS capabilities for R. (2014).

Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data. 2018;5:170191. PubMed PMC

Wang B. The Asian Monsoon. Springer; 2006.

R Core Team. A Language and Environment for Statistical Computing (2021).

Gorelick N, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017;202:18–27.

Lebreton J, Burnham KP, Clobert J, Anderson DR. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 1992;62:67–118.

White GC, Burnham KP. Program MARK: Survival estimation from populations of marked animals. Bird Study. 1999;46:S120–S139.

Pradel R. Flexibility in survival analysis from recapture data: Handling trap-dependence. In: Lebreton J-D, North P, editors. Marked Individuals in the Study of Bird Population. Birkhäuser-Verlag; 1993.

Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography (Cop.) 2009;32:1071–1074.

Pakanen VM, et al. Natal dispersal does not entail survival costs but is linked to breeding dispersal in a migratory shorebird, the southern dunlin Calidris alpina schinzii. Oikos. 2022 doi: 10.1111/oik.08951. DOI

Burnham K, Anderson D. Model Selection and Multimodel Inference: A Practical in-Formation-Theoretic Approach. Springer; 2002.

Grosbois V, et al. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 2008;83:357–399. PubMed

Brlík V, 2022. Survival fluctuations linked to variation in the South Asian monsoon in a Palearctic migratory shorebird. Zenodo. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...