Evolutionary history and patterns of geographical variation, fertility, and hybridization in Stuckenia (Potamogetonaceae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36407593
PubMed Central
PMC9670304
DOI
10.3389/fpls.2022.1042517
Knihovny.cz E-zdroje
- Klíčová slova
- Groenlandia, Potamogetonaceae, Stuckenia, geographic distribution, hybridization, intraspecific variation, multigene phylogeny, species delimitation,
- Publikační typ
- časopisecké články MeSH
Aquatic plant species are often widespread, even across continents. They pose a challenge to species delimitation and taxonomy due to their reduced morphology and high phenotypic plasticity. These difficulties are even more pronounced in the case of interspecific hybridization. We investigate the aquatic plant genus Stuckenia for the first time on a worldwide scale. Expert species determination is aided by sequencing of nuclear ribosomal ITS and 5S-NTS regions and the plastid intergenic spacers rpl20-5'rps12 and trnT-trnL. Nuclear markers are used to infer hybridization, and the maternal origin of hybrids is addressed with plastid markers. Pure species are subjected to phylogenetic analyses. Two main Stuckenia lineages are found: one consists of S. amblyphylla, S. filiformis, S. pamirica, and S. vaginata, the other includes S. pectinata and S. striata. The widespread species S. pectinata, S. filiformis, and S. vaginata show intraspecific genetic variation, which is structured geographically. Many intraspecific hybrids, which are usually fertile, occur between those genotypes. Interspecific hybrids, which are consistently sterile, are detected among all widespread species; some are reported for the first time in several countries and regions. They originated multiple times from reciprocal crosses and reflect the geographical origins of parental genotypes. Intraspecific genetic variation can be higher than interspecific differences between closely related species. Comparison of phenotypic variation in the field and in cultivation with genotypic variation shows that numerous conspicuous forms have been overestimated taxonomically. These are resolved as phenotypes responding to unusual environments, have recurrently evolved adaptations, or represent extreme forms of continuous variation of the recognized species. However, some specific regional lineages, which have evolved from variable species, may be interpreted as early steps of the speciation process. Hybridization has been underestimated in some regions as a source of Stuckenia diversity, and the respective hybrid plants have been misidentified as intraspecific taxa or even as separate species. Many erroneous entries in sequence databases are detected and summarized. This work provides a sound basis for species delimitation and hybrid recognition in this difficult genus.
Department of Biology Massachusetts College of Liberal Arts North Adams MA United States
Department of Botany Faculty of Science Charles University Prague Czechia
Institute of Botany Czech Academy of Sciences Průhonice Czechia
Papanin Institute for Biology of Inland Waters Russian Academy of Sciences Borok Russia
Zobrazit více v PubMed
Acosta M. C., Premoli A. C. (2010). Evidence of plastid capture in South American PubMed DOI
Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434. doi: 10.1016/s1055-7903(03)00208-2 PubMed DOI
Aykurt C., Fehrer J., Sarı D., Kaplan Z., Deniz İ. G., Aydemir E., et al. (2017). Hybridization between the linear-leaved DOI
Aykurt C., Fehrer J., Sarı Yol D., Kaplan Z., Bambasová V., Deniz İ. G., et al. (2020). Taxonomic treatment and phylogenetic analysis of the family Potamogetonaceae in Turkey. Taxon 69, 1172–1190. doi: 10.1002/tax.12364 DOI
Bobrov A. A. (2007).
Bobrov A. A. (2020). “Sem. 23. Potamogetonaceae Bercht. Et J. Presl – rdestovye,” in Opredelitel’ vyssikh rastenii yakutii [Manual to the higher plants of yakutia], 2nd ed., revised and completed. Ed. Nikolin E. G. (Moscow: KMK; Novosibirsk: Nauka; ), 77–85.
Bobrov A. A., Chemeris E. V. (2006). Zametki o rechnykh rdestakh (
Borchsenius F. (2009) FastGap 1.2 (Denmark: Department of Biosciences, Aarhus University; ). Available at: http://www.aubot.dk/FastGap_home.htm (Accessed August 3, 2022).
Busik V. V. (1979). “Semeistvo Potamogetonaceae – rdestovyje,” in Flora tsentral’noi Sibiri [Flora of central Siberia], vol. 1 . Eds. Malyshev L. I., Peshkova G. A. (Novosibirsk: Nauka; ), 57–65 & 444–445.
Dandy J. E. (1975). “
Du Z., Wang Q. (2016). Allopatric divergence of PubMed DOI PMC
Fehrer J., Iida S., Kaplan Z. (2022). Cryptic species of pondweeds (Potamogetonaceae) at an intercontinental scale revealed by molecular phylogenetic analyses. Taxon 71, 531–551. doi: 10.1002/tax.12686 DOI
Fehrer J., Krak K., Chrtek J., Jr. (2009). Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds ( PubMed DOI PMC
Hagström J. O. (1916). Critical researches on the Potamogetons. Kungl. Svenska Vetenskapsakad. Handl. 55 (5), 1–281.
Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Haynes R. R., Hellquist C. B. (2000). “Potamogetonaceae Dumortier,” in Flora of North America North of Mexico, eds. Flora of North America editorial committee, vol. 22. (New York: Oxford University Press; ), 47–74.
Hettiarachchi P., Triest L. (1991). Isozyme polymorphism in the genus
Hollingsworth P. M., Preston C. D., Gornall R. J. (1996). Isozyme evidence for the parentage and multiple origins of DOI
Hultén E., Fries M. (1986). Atlas of North European vascular plants North of the Tropic of Cancer Vol. Vols 1–3 (Königstein: Koeltz Scientific Books; ).
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi: 10.1093/molbev/msj030 PubMed DOI
Iida S., Ashiya M., Kadono Y. (2018). The hybrid origin of DOI
Iida S., Kosuge K., Kadono Y. (2004). Molecular phylogeny of Japanese DOI
Ito Y., Robledo G. L., Iharlegui L., Tanaka N. (2016). Phylogeny of
Kaplan Z. (2002). Phenotypic plasticity in DOI
Kaplan Z. (2005).
Kaplan Z. (2008). A taxonomic revision of DOI
Kaplan Z. (2010. a). Hybridization of
Kaplan Z. (2010. b). Tiselius’ DOI
Kaplan Z., Fehrer J. (2004). Evidence for the hybrid origin of DOI
Kaplan Z., Fehrer J. (2006). Comparison of natural and artificial hybridization in
Kaplan Z., Fehrer J. (2007). Molecular evidence for a natural primary triple hybrid in plants revealed from direct sequencing. Ann. Bot. 99, 1213–1222. doi: 10.1093/aob/mcm072 PubMed DOI PMC
Kaplan Z., Fehrer J. (2009). An orphaned clone of
Kaplan Z., Fehrer J. (2011). Erroneous identities of DOI
Kaplan Z., Fehrer J. (2013). Molecular identification of hybrids from a former hot spot of DOI
Kaplan Z., Fehrer J., Bambasová V., Hellquist C. B. (2018). The endangered Florida pondweed ( PubMed DOI PMC
Kaplan Z., Fehrer J., Hellquist C. B. (2009). New hybrid combinations revealed by molecular analysis: The unknown side of North American pondweed diversity ( DOI
Kaplan Z., Fehrer J., Hellquist C. B. (2011). DOI
Kaplan Z., Fehrer J., Jobson R. W. (2019). Discovery of the Northern Hemisphere hybrid DOI
Kaplan Z., Jarolímová V., Fehrer J. (2013). Revision of chromosome numbers of Potamogetonaceae: A new basis for taxonomic and evolutionary implications. Preslia 85, 421–482.
Kaplan Z., Štěpánek J. (2003). Genetic variation within and between populations of DOI
Kaplan Z., Uotila P. (2011). DOI
Kaplan Z., Wolff P. (2004). A morphological, anatomical and isozyme study of
Kaplan Z., Zalewska-Gałosz J. (2004). DOI
Kashina L. I. (1988). “Potamogetonaceae – rdestovye,” in Flora Sibiri [Flora of Siberia], Lycopodiaceae – Hydrocharitaceae. Ed. Krasnoborov I. M. (Novosibirsk: Nauka; ), 93–105 & 165–176.
King R. A., Gornall R. J., Preston C. D., Croft J. M. (2001). Molecular confirmation of DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. doi: 10.1093/molbev/msy096 PubMed DOI PMC
Kuzmina M. L., Braukmann T. W. A., Fazekas A. J., Graham S. W., Dewaard S. L., Rodrigues A., et al. (2017). Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada. Appl. Plant Sci. 5, apps.1700079. doi: 10.3732/apps.1700079 PubMed DOI PMC
Kuzmina M. L., Braukmann T. W. A., Zakharov E. V. (2018). Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds. Appl. Plant Sci. 6, e01155. doi: 10.1002/aps3.1155 PubMed DOI PMC
Lindqvist C., De Laet J., Haynes R. R., Aagesen L., Keener B. R., Albert V. A. (2006). Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 22, 568–588. doi: 10.1111/j.1096-0031.2006.00124.x PubMed DOI
McMullan J. J., Gornall R. J., Preston C. D. (2011). ITS rDNA polymorphism among species and hybrids of DOI
Posada D., Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818. doi: 10.1093/bioinformatics/14.9.817 PubMed DOI
Preston C. D. (1995). Pondweeds of Great Britain and Ireland (London: Botanical Society of the British Isles; ).
Preston C. D., Croft J. M. (1997). Aquatic plants in Britain and Ireland (Colchester: Harley Books; ).
Preston C. D., Hollingsworth P. M., Gornall R. J. (1998).
Preston C. D., Hollingsworth P. M., Gornall R. J. (1999). The distribution and habitat of
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Schultes J. A. (1814). Österreichs flora. Wien: C. Schaumburg und Compagnie.
Simmons M. P., Ochoterena H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381. doi: 10.1093/sysbio/49.2.369 PubMed DOI
Small R. L., Cronn R. C., Wendel J. F. (2004). Use of nuclear genes for phylogeny reconstruction in plants. Aus. Sys. Bot. 17, 145–170. doi: 10.1071/SB03015 DOI
Štorchová H., Hrdličková R., Chrtek J., Jr., Tetera M., Fitze D., Fehrer J. (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. doi: 10.2307/1223934 DOI
Swofford D. (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4 (Sunderland, MA: Sinauer; ).
Tolmachev A. I. (1995). Flora of the Russian Arctic 1: Polypodiaceae – Gramineae (Edmonton: University of Alberta Press; ).
Tzvelev N. N. (1984). Zametki o nekotorych gidrofil’nykh rasteniyakh Dal’nego Vostoka [Comments on some hydrophilous plants of the Far East]. Nov. Sist. Vyssh. Rast. 21, 232–242.
Tzvelev N. N. (1987). “Rdestovye – Potamogetonaceae Dumort,” in Sosudistye rasteniya sovetskogo Dal’nego Vostoka [Vascular plants of the soviet Far East]. Ed. Kharkevich S. S. (Leningrad: Nauka; ).
Tzvelev N. N. (1996). O vidakh podroda
Tzvelev N. N. (1999). Ob ob’yome i nomenklature nekotorykh rodov sosudistykh rastenii Evropeiskoi Rossii [On size and nomenclature of some genera of vascular plants of European Russia]. Bot. Zhurn. 84 (7), 109–118.
Van Wijk R. J. (1988). Ecological studies on DOI
Volkova P. A., Kipriyanova L. M., Maltseva S. Yu., Bobrov A. A. (2017). In search of speciation: diversification of DOI
Wang Q. D., Zhang T., Wang J. B. (2007). Phylogenetic relationships and hybrid origin of DOI
Whittemore A. T., Schaal B. A. (1991). Interspecific gene flow in sympatric oaks. Proc. Natl. Acad. Sci. U. S. A. 88, 2540–2544. doi: 10.1073/pnas.88.6.2540 PubMed DOI PMC
Wiegleb G., Kaplan Z. (1998). An account of the species of DOI
Zalewska-Gałosz J. (2010). DOI
Zalewska-Gałosz J., Kaplan Z., Kwolek D. (2018). Reinterpretation of DOI
Zalewska-Gałosz J., Ronikier M., Kaplan Z. (2009). The first European record of
Zalewska-Gałosz J., Ronikier M., Kaplan Z. (2010). Discovery of a new, recurrently formed DOI
Zhang T., Wang Q., Li W., Cheng Y., Wang J. (2008). Analysis of phylogenetic relationships of DOI
Zhao T., Wang G., Ma Q., Liang L., Yang Z. (2020). Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus PubMed DOI