Evolutionary history and patterns of geographical variation, fertility, and hybridization in Stuckenia (Potamogetonaceae)

. 2022 ; 13 () : 1042517. [epub] 20221103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36407593

Aquatic plant species are often widespread, even across continents. They pose a challenge to species delimitation and taxonomy due to their reduced morphology and high phenotypic plasticity. These difficulties are even more pronounced in the case of interspecific hybridization. We investigate the aquatic plant genus Stuckenia for the first time on a worldwide scale. Expert species determination is aided by sequencing of nuclear ribosomal ITS and 5S-NTS regions and the plastid intergenic spacers rpl20-5'rps12 and trnT-trnL. Nuclear markers are used to infer hybridization, and the maternal origin of hybrids is addressed with plastid markers. Pure species are subjected to phylogenetic analyses. Two main Stuckenia lineages are found: one consists of S. amblyphylla, S. filiformis, S. pamirica, and S. vaginata, the other includes S. pectinata and S. striata. The widespread species S. pectinata, S. filiformis, and S. vaginata show intraspecific genetic variation, which is structured geographically. Many intraspecific hybrids, which are usually fertile, occur between those genotypes. Interspecific hybrids, which are consistently sterile, are detected among all widespread species; some are reported for the first time in several countries and regions. They originated multiple times from reciprocal crosses and reflect the geographical origins of parental genotypes. Intraspecific genetic variation can be higher than interspecific differences between closely related species. Comparison of phenotypic variation in the field and in cultivation with genotypic variation shows that numerous conspicuous forms have been overestimated taxonomically. These are resolved as phenotypes responding to unusual environments, have recurrently evolved adaptations, or represent extreme forms of continuous variation of the recognized species. However, some specific regional lineages, which have evolved from variable species, may be interpreted as early steps of the speciation process. Hybridization has been underestimated in some regions as a source of Stuckenia diversity, and the respective hybrid plants have been misidentified as intraspecific taxa or even as separate species. Many erroneous entries in sequence databases are detected and summarized. This work provides a sound basis for species delimitation and hybrid recognition in this difficult genus.

Zobrazit více v PubMed

Acosta M. C., Premoli A. C. (2010). Evidence of plastid capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Phylogenet. Evol. 54, 235–242. doi: 10.1016/j.ympev.2009.08.008 PubMed DOI

Álvarez I., Wendel J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434. doi: 10.1016/s1055-7903(03)00208-2 PubMed DOI

Aykurt C., Fehrer J., Sarı D., Kaplan Z., Deniz İ. G., Aydemir E., et al. . (2017). Hybridization between the linear-leaved Potamogeton species in Turkey. Aquat. Bot. 141, 22–28. doi: 10.1016/j.aquabot.2017.05.005 DOI

Aykurt C., Fehrer J., Sarı Yol D., Kaplan Z., Bambasová V., Deniz İ. G., et al. . (2020). Taxonomic treatment and phylogenetic analysis of the family Potamogetonaceae in Turkey. Taxon 69, 1172–1190. doi: 10.1002/tax.12364 DOI

Bobrov A. A. (2007). Potamogeton × fennicus (P. filiformis × P. vaginatus, Potamogetonaceae) in East Europe. Komarovia 5, 1–23.

Bobrov A. A. (2020). “Sem. 23. Potamogetonaceae Bercht. Et J. Presl – rdestovye,” in Opredelitel’ vyssikh rastenii yakutii [Manual to the higher plants of yakutia], 2nd ed., revised and completed. Ed. Nikolin E. G. (Moscow: KMK; Novosibirsk: Nauka; ), 77–85.

Bobrov A. A., Chemeris E. V. (2006). Zametki o rechnykh rdestakh (Potamogeton L., Potamogetonaceae) Verkhnego Povolzhiya [Notes on river pondweeds (Potamogeton L., Potamogetonaceae) in Upper Volga region]. Novosti Sist. Vyssh. Rast. 38, 23–65.

Borchsenius F. (2009) FastGap 1.2 (Denmark: Department of Biosciences, Aarhus University; ). Available at: http://www.aubot.dk/FastGap_home.htm (Accessed August 3, 2022).

Busik V. V. (1979). “Semeistvo Potamogetonaceae – rdestovyje,” in Flora tsentral’noi Sibiri [Flora of central Siberia], vol. 1 . Eds. Malyshev L. I., Peshkova G. A. (Novosibirsk: Nauka; ), 57–65 & 444–445.

Dandy J. E. (1975). “ Potamogeton L.,” in Hybridization and the flora of the British isles. Ed. Stace C. A. (London: Academic Press; ), 444–459.

Du Z., Wang Q. (2016). Allopatric divergence of Stuckenia filiformis (Potamogetonaceae) on the Qinghai-Tibet plateau and its comparative phylogeography with S. pectinata in China. Sci. Rep. 6, 20883. doi: 10.1038/srep20883 PubMed DOI PMC

Fehrer J., Iida S., Kaplan Z. (2022). Cryptic species of pondweeds (Potamogetonaceae) at an intercontinental scale revealed by molecular phylogenetic analyses. Taxon 71, 531–551. doi: 10.1002/tax.12686 DOI

Fehrer J., Krak K., Chrtek J., Jr. (2009). Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol. Biol. 9, 239. doi: 10.1186/1471-2148-9-239 PubMed DOI PMC

Hagström J. O. (1916). Critical researches on the Potamogetons. Kungl. Svenska Vetenskapsakad. Handl. 55 (5), 1–281.

Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Haynes R. R., Hellquist C. B. (2000). “Potamogetonaceae Dumortier,” in Flora of North America North of Mexico, eds. Flora of North America editorial committee, vol. 22. (New York: Oxford University Press; ), 47–74.

Hettiarachchi P., Triest L. (1991). Isozyme polymorphism in the genus Potamogeton (Potamogetonaceae). Opera Bot. Belg. 4, 87–114.

Hollingsworth P. M., Preston C. D., Gornall R. J. (1996). Isozyme evidence for the parentage and multiple origins of Potamogeton ×suecicus (P. pectinatus × P. filiformis, Potamogetonaceae). Pl. Syst. Evol. 202, 219–232. doi: 10.1007/BF00983384 DOI

Hultén E., Fries M. (1986). Atlas of North European vascular plants North of the Tropic of Cancer Vol. Vols 1–3 (Königstein: Koeltz Scientific Books; ).

Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi: 10.1093/molbev/msj030 PubMed DOI

Iida S., Ashiya M., Kadono Y. (2018). The hybrid origin of Potamogeton biwaensis Miki, an endemic submerged plant in Lake Biwa, Japan. Aquat. Bot. 150, 23–26. doi: 10.1016/j.aquabot.2018.06.005 DOI

Iida S., Kosuge K., Kadono Y. (2004). Molecular phylogeny of Japanese Potamogeton species in light of noncoding plastid sequences. Aquat. Bot. 80, 115–127. doi: 10.1016/j.aquabot.2004.08.005 DOI

Ito Y., Robledo G. L., Iharlegui L., Tanaka N. (2016). Phylogeny of Potamogeton (Potamogetonaceae) revisited: Implications for hybridization and introgression in Argentina. Bull. Natl. Mus. Nat. Sci. Ser. B. 42, 131–141.

Kaplan Z. (2002). Phenotypic plasticity in Potamogeton (Potamogetonaceae). Folia Geobot. 37, 141–170. doi: 10.1007/BF02804229 DOI

Kaplan Z. (2005). Potamogeton schweinfurthii A. Benn. a new species for Europe. Preslia 77, 419–431.

Kaplan Z. (2008). A taxonomic revision of Stuckenia (Potamogetonaceae) in Asia, with notes on the diversity and variation of the genus on a worldwide scale. Folia Geobot. 43, 159–234. doi: 10.1007/s12224-008-9010-0 DOI

Kaplan Z. (2010. a). Hybridization of Potamogeton species in the Czech Republic: diversity, distribution, temporal trends and habitat preferences. Preslia 82, 261–287.

Kaplan Z. (2010. b). Tiselius’ Potamogeton exsiccates: Changes in taxonomy and nomenclature from one-century perspective. Ann. Bot. Fenn. 47, 373–393. doi: 10.5735/085.047.0508 DOI

Kaplan Z., Fehrer J. (2004). Evidence for the hybrid origin of Potamogeton ×cooperi (Potamogetonaceae): traditional morphology-based taxonomy and molecular techniques in concert. Folia Geobot. 39, 431–453. doi: 10.1007/BF02803212 DOI

Kaplan Z., Fehrer J. (2006). Comparison of natural and artificial hybridization in Potamogeton . Preslia 78, 303–316.

Kaplan Z., Fehrer J. (2007). Molecular evidence for a natural primary triple hybrid in plants revealed from direct sequencing. Ann. Bot. 99, 1213–1222. doi: 10.1093/aob/mcm072 PubMed DOI PMC

Kaplan Z., Fehrer J. (2009). An orphaned clone of Potamogeton ×schreberi in the Czech Republic. Preslia 81, 387–397.

Kaplan Z., Fehrer J. (2011). Erroneous identities of Potamogeton hybrids corrected by molecular analysis of plants from type clones. Taxon 60, 758–766. doi: 10.1002/tax.603011 DOI

Kaplan Z., Fehrer J. (2013). Molecular identification of hybrids from a former hot spot of Potamogeton hybrid diversity. Aquat. Bot. 105, 34–40. doi: 10.1016/j.aquabot.2012.11.002 DOI

Kaplan Z., Fehrer J., Bambasová V., Hellquist C. B. (2018). The endangered Florida pondweed (Potamogeton floridanus) is a hybrid. PloS One 13, e0195241. doi: 10.1371/journal.pone.0195241 PubMed DOI PMC

Kaplan Z., Fehrer J., Hellquist C. B. (2009). New hybrid combinations revealed by molecular analysis: The unknown side of North American pondweed diversity (Potamogeton). Syst. Bot. 34, 625–642. doi: 10.1600/036364409790139745 DOI

Kaplan Z., Fehrer J., Hellquist C. B. (2011). Potamogeton ×jacobsii (Potamogetonaceae) from New South Wales, Australia – the first Potamogeton hybrid from the Southern Hemisphere. Telopea 13, 245–256. doi: 10.7751/telopea20116018 DOI

Kaplan Z., Fehrer J., Jobson R. W. (2019). Discovery of the Northern Hemisphere hybrid Potamogeton ×salicifolius in the pilbara region of Western Australia. Telopea 22, 141–151. doi: 10.7751/telopea13434 DOI

Kaplan Z., Jarolímová V., Fehrer J. (2013). Revision of chromosome numbers of Potamogetonaceae: A new basis for taxonomic and evolutionary implications. Preslia 85, 421–482.

Kaplan Z., Štěpánek J. (2003). Genetic variation within and between populations of Potamogeton pusillus agg. Pl. Syst. Evol. 239, 95–112. doi: 10.1007/s00606-002-0252-7 DOI

Kaplan Z., Uotila P. (2011). Potamogeton ×exilis (P. alpinus × P. natans), a new hybrid pondweed from Finland. Nord. J. Bot. 29, 477–483. doi: 10.1111/j.1756-1051.2011.01240.x DOI

Kaplan Z., Wolff P. (2004). A morphological, anatomical and isozyme study of Potamogeton ×schreberi: confirmation of its recent occurrence in Germany and first documented record in France. Preslia 76, 141–161.

Kaplan Z., Zalewska-Gałosz J. (2004). Potamogeton taxa proposed by J. F. Wolfgang and his collaborators. Taxon 53, 1033–1041. doi: 10.2307/4135570 DOI

Kashina L. I. (1988). “Potamogetonaceae – rdestovye,” in Flora Sibiri [Flora of Siberia], Lycopodiaceae – Hydrocharitaceae. Ed. Krasnoborov I. M. (Novosibirsk: Nauka; ), 93–105 & 165–176.

King R. A., Gornall R. J., Preston C. D., Croft J. M. (2001). Molecular confirmation of Potamogeton ×bottnicus (P. pectinatus × P. vaginatus, Potamogetonaceae) in Britain. Bot. J. Linn. Soc 135, 67–70. doi: 10.1006/bojl.2000.0354 DOI

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. doi: 10.1093/molbev/msy096 PubMed DOI PMC

Kuzmina M. L., Braukmann T. W. A., Fazekas A. J., Graham S. W., Dewaard S. L., Rodrigues A., et al. . (2017). Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada. Appl. Plant Sci. 5, apps.1700079. doi: 10.3732/apps.1700079 PubMed DOI PMC

Kuzmina M. L., Braukmann T. W. A., Zakharov E. V. (2018). Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds. Appl. Plant Sci. 6, e01155. doi: 10.1002/aps3.1155 PubMed DOI PMC

Lindqvist C., De Laet J., Haynes R. R., Aagesen L., Keener B. R., Albert V. A. (2006). Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 22, 568–588. doi: 10.1111/j.1096-0031.2006.00124.x PubMed DOI

McMullan J. J., Gornall R. J., Preston C. D. (2011). ITS rDNA polymorphism among species and hybrids of Potamogeton subgenus Coleogeton (Potamogetonaceae) in North-western Europe. New J. Bot. 1, 111–115. doi: 10.1179/204234811X13194453002788 DOI

Posada D., Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818. doi: 10.1093/bioinformatics/14.9.817 PubMed DOI

Preston C. D. (1995). Pondweeds of Great Britain and Ireland (London: Botanical Society of the British Isles; ).

Preston C. D., Croft J. M. (1997). Aquatic plants in Britain and Ireland (Colchester: Harley Books; ).

Preston C. D., Hollingsworth P. M., Gornall R. J. (1998). Potamogeton pectinatus L. × P. vaginatus Turcz. (P. ×bottnicus Hagstr.), a newly identified hybrid in the British Isles. Watsonia 22, 69–82.

Preston C. D., Hollingsworth P. M., Gornall R. J. (1999). The distribution and habitat of Potamogeton ×suecicus K. Richt. (P. filiformis Pers. × P. pectinatus L.) in the British Isles. Watsonia 22, 329–342.

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. . (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC

Schultes J. A. (1814). Österreichs flora. Wien: C. Schaumburg und Compagnie.

Simmons M. P., Ochoterena H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381. doi: 10.1093/sysbio/49.2.369 PubMed DOI

Small R. L., Cronn R. C., Wendel J. F. (2004). Use of nuclear genes for phylogeny reconstruction in plants. Aus. Sys. Bot. 17, 145–170. doi: 10.1071/SB03015 DOI

Štorchová H., Hrdličková R., Chrtek J., Jr., Tetera M., Fitze D., Fehrer J. (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. doi: 10.2307/1223934 DOI

Swofford D. (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4 (Sunderland, MA: Sinauer; ).

Tolmachev A. I. (1995). Flora of the Russian Arctic 1: Polypodiaceae – Gramineae (Edmonton: University of Alberta Press; ).

Tzvelev N. N. (1984). Zametki o nekotorych gidrofil’nykh rasteniyakh Dal’nego Vostoka [Comments on some hydrophilous plants of the Far East]. Nov. Sist. Vyssh. Rast. 21, 232–242.

Tzvelev N. N. (1987). “Rdestovye – Potamogetonaceae Dumort,” in Sosudistye rasteniya sovetskogo Dal’nego Vostoka [Vascular plants of the soviet Far East]. Ed. Kharkevich S. S. (Leningrad: Nauka; ).

Tzvelev N. N. (1996). O vidakh podroda Coleogeton roda Potamogeton (Potamogetonaceae) v severozapadnoi Rossii [On species of Potamogeton subgenus Coleogeton (Potamogetonaceae) in northwestern Russia]. Bot. Zhurn. 81 (7), 88–91.

Tzvelev N. N. (1999). Ob ob’yome i nomenklature nekotorykh rodov sosudistykh rastenii Evropeiskoi Rossii [On size and nomenclature of some genera of vascular plants of European Russia]. Bot. Zhurn. 84 (7), 109–118.

Van Wijk R. J. (1988). Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquat. Bot. 31, 211–258. doi: 10.1016/0304-3770(88)90015-0 DOI

Volkova P. A., Kipriyanova L. M., Maltseva S. Yu., Bobrov A. A. (2017). In search of speciation: diversification of Stuckenia pectinata s.l. (Potamogetonaceae) in southern Siberia (Asian Russia). Aquat. Bot. 143, 25–32. doi: 10.1016/J.AQUABOT.2017.07.003 DOI

Wang Q. D., Zhang T., Wang J. B. (2007). Phylogenetic relationships and hybrid origin of Potamogeton species (Potamogetonaceae) distributed in China: insights from the nuclear ribosomal internal transcribed spacer sequence (ITS). Plant Syst. Evol. 267, 65–78. doi: 10.1007/s00606-006-0499-5 DOI

Whittemore A. T., Schaal B. A. (1991). Interspecific gene flow in sympatric oaks. Proc. Natl. Acad. Sci. U. S. A. 88, 2540–2544. doi: 10.1073/pnas.88.6.2540 PubMed DOI PMC

Wiegleb G., Kaplan Z. (1998). An account of the species of Potamogeton L. (Potamogetonaceae). Folia Geobot. 33, 241–316. doi: 10.1007/BF03216205 DOI

Zalewska-Gałosz J. (2010). Potamogeton ×subrufus Hagstr.: A neglected Potamogeton hybrid. Ann. Bot. Fennici 47, 257–260. doi: 10.5735/085.047.0402 DOI

Zalewska-Gałosz J., Kaplan Z., Kwolek D. (2018). Reinterpretation of Potamogeton ×nerviger: solving a taxonomic puzzle after two centuries. Preslia 90, 135–149. doi: 10.23855/preslia.2018.135 DOI

Zalewska-Gałosz J., Ronikier M., Kaplan Z. (2009). The first European record of Potamogeton ×subobtusus identified using ITS and cpDNA sequence data. Preslia 81, 281–292.

Zalewska-Gałosz J., Ronikier M., Kaplan Z. (2010). Discovery of a new, recurrently formed Potamogeton hybrid in Europe and Africa: molecular evidence and morphological comparison of different clones. Taxon 59, 559–566. doi: 10.1002/tax.592020 DOI

Zhang T., Wang Q., Li W., Cheng Y., Wang J. (2008). Analysis of phylogenetic relationships of Potamogeton species in China based on plastid trnT-trnF sequences. Aquat. Bot. 89, 34–42. doi: 10.1016/j.aquabot.2008.02.002 DOI

Zhao T., Wang G., Ma Q., Liang L., Yang Z. (2020). Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae). Mol. Phylogenet. Evol. 142, 106658. doi: 10.1016/j.ympev.2019.106658 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace