Target Mechanisms of the Cyanotoxin Cylindrospermopsin in Immortalized Human Airway Epithelial Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36422959
PubMed Central
PMC9698144
DOI
10.3390/toxins14110785
PII: toxins14110785
Knihovny.cz E-zdroje
- Klíčová slova
- airway epithelial cells, cell cycle, cyanotoxin, cylindrospermopsin, cytokinesis, extracellular matrix, proteomics,
- MeSH
- epitelové buňky * účinky léků metabolismus MeSH
- lidé MeSH
- proteiny buněčného cyklu MeSH
- proteomika MeSH
- toxiny kmene Cyanobacteria * toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Cep55 protein, human MeSH Prohlížeč
- cylindrospermopsin MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- toxiny kmene Cyanobacteria * MeSH
Cylindrospermopsin (CYN) is a cyanobacterial toxin that occurs in aquatic environments worldwide. It is known for its delayed effects in animals and humans such as inhibition of protein synthesis or genotoxicity. The molecular targets and the cell physiological mechanisms of CYN, however, are not well studied. As inhalation of CYN-containing aerosols has been identified as a relevant route of CYN uptake, we analyzed the effects of CYN on protein expression in cultures of immortalized human bronchial epithelial cells (16HBE14o-) using a proteomic approach. Proteins whose expression levels were affected by CYN belonged to several functional clusters, mainly regulation of protein stability, cellular adhesion and integration in the extracellular matrix, cell proliferation, cell cycle regulation, and completion of cytokinesis. With a few exceptions of upregulated proteins (e.g., ITI inhibitor of serine endopeptidases and mRNA stabilizer PABPC1), CYN mediated the downregulation of many proteins. Among these, centrosomal protein 55 (CEP55) and osteonectin (SPARC) were significantly reduced in their abundance. Results of the detailed semi-quantitative Western blot analyses of SPARC, claudin-6, and CEP55 supported the findings from the proteomic study that epithelial cell adhesion, attenuation of cell proliferation, delayed completion of mitosis, as well as induction of genomic instability are major effects of CYN in eukaryotic cells.
Zobrazit více v PubMed
Anderson D.M., Glibert P., Burkholder J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries. 2002;25:704–726. doi: 10.1007/BF02804901. DOI
Heil C.A., Muni-Morgan A.L. Florida’s harmful algal bloom (HAB) problem: Escalating risks to human, environmental and economic health with climate change. Front. Ecol. Evol. 2021;9:646080. doi: 10.3389/fevo.2021.646080. DOI
Heisler J., Glibert P., Burkholder J., Anderson D., Cochlan W., Dennison W., Dortch Q., Gobler C., Heil C., Humphries E., et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae. 2008;8:3–13. doi: 10.1016/j.hal.2008.08.006. PubMed DOI PMC
Backer L.C., McNeel S.V., Barber T., Kirkpatrick B., Williams C., Irvin M., Zhou Y., Johnson T.B., Nierenberg K., Aubel M., et al. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon. 2010;55:909–921. doi: 10.1016/j.toxicon.2009.07.006. PubMed DOI
Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI
Manganelli M., Scardala S., Stefanelli M., Palazzo F., Funari E., Vichi S., Buratti F.M., Testai E. Emerging health issues of cyanobacterial blooms. Ann. Ist. Super. Sanità. 2012;48:415–428. doi: 10.4415/ANN_12_04_09. PubMed DOI
Benson J.M., Hutt J.A., Rein K., Boggs S.E., Barr E.B., Fleming L.E. The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon. 2005;45:691–698. doi: 10.1016/j.toxicon.2005.01.004. PubMed DOI PMC
Kamp L., Church J.L., Carpino J., Faltin-Mara E., Rubio F. The effects of water sample treatment, preparation, and storage prior to cyanotoxin analysis for cylindrospermopsin, microcystin and saxitoxin. Chem. Interact. 2015;246:45–51. doi: 10.1016/j.cbi.2015.12.016. PubMed DOI
Chorus I., Welker M. Cyanobacterial toxins. In: Chorus I., Welker M., editors. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. CRC Press; London, UK: 2021. pp. 13–20. Chapter 2. DOI
Wiśniewska K., Śliwińska-Wilczewska S., Savoie M., Lewandowska A.U. Quantitative and qualitative variability of airborne cyanobacteria and microalgae and their toxins in the coastal zone of the Baltic Sea. Sci. Total Environ. 2022;826:154152. doi: 10.1016/j.scitotenv.2022.154152. PubMed DOI
Ohtani I., Moore R.E., Runnegar M.T.C. Cylindrospermopsin: A potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 1992;114:7941–7942. doi: 10.1021/ja00046a067. DOI
Moreira C., Azevedo J., Antunes A., Vasconcelos V. Cylindrospermopsin: Occurrence, methods of detection and toxicology. J. Appl. Microbiol. 2012;114:605–620. doi: 10.1111/jam.12048. PubMed DOI
Fastner J., Rücker J., Stüken A., Preußel K., Nixdorf B., Chorus I., Köhler A., Wiedner C. Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ. Toxicol. 2007;22:26–32. doi: 10.1002/tox.20230. PubMed DOI
Botana L.M., Louzao M.C., Vilariño N. Climate Change and Marine and Freshwater Toxins. Walter de Gruyter GmbH; Berlin, Germany: 2021. DOI
Preußel K., Stüken A., Wiedner C., Chorus I., Fastner J. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon. 2006;47:156–162. doi: 10.1016/j.toxicon.2005.10.013. PubMed DOI
Spoof L., Berg K.A., Rapala J., Lahti K., Lepistö L., Metcalf J.S., Codd G.A., Meriluoto J. First observation of cylindrospermopsin inAnabaena lapponica isolated from the boreal environment (Finland) Environ. Toxicol. 2006;21:552–560. doi: 10.1002/tox.20216. PubMed DOI
Rücker J., Stüken A., Nixdorf B., Fastner J., Chorus I., Wiedner C. Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon. 2007;50:800–809. doi: 10.1016/j.toxicon.2007.06.019. PubMed DOI
Kobos J., Błaszczyk A., Hohlfeld N., Toruńska-Sitarz A., Krakowiak A., Hebel A., Sutryk K., Grabowska M., Toporowska M., Kokociński M., et al. Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanol. Hydrobiol. Stud. 2013;42:358–378. doi: 10.2478/s13545-013-0093-8. DOI
Chiswell R.K., Shaw G.R., Eaglesham G., Smith M.J., Norris R.L., Seawright A.A., Moore M.R. Stability of cylindrosper-mopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: Effect of pH, temperature, and sunlight on de-composition. Environm. Toxicol. 1999;14:155–161. doi: 10.1002/(SICI)1522-7278(199902)14:1<155::AID-TOX20>3.0.CO;2-Z. DOI
Shaw G.R., Seawright A.A., Moore M.R., Lam P.K. Cylindrospermopsin, a cyanobacterial alkaloid: Evaluation of its toxicologic activity. Ther. Drug Monit. 2000;22:89–92. doi: 10.1097/00007691-200002000-00019. PubMed DOI
Seawright A.A., Nolan C.C., Shaw G.R., Chiswell R.K., Norris R.L., Moore M.R., Smith M.J. The oral toxicity for mice of the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Environ. Toxicol. 1999;14:135–142. doi: 10.1002/(SICI)1522-7278(199902)14:1<135::AID-TOX17>3.0.CO;2-L. DOI
Pichardo S., Cameán A.M., Jos A. In vitro toxicological assessment of cylindrospermopsin: A review. Toxins. 2017;9:402. doi: 10.3390/toxins9120402. PubMed DOI PMC
Norris R., Seawright A., Shaw G., Senogles P., Eaglesham G., Smith M., Chiswell R., Moore M. Hepatic xenobiotic metabolism of cylindrospermopsin in vivo in the mouse. Toxicon. 2001;40:471–476. doi: 10.1016/S0041-0101(01)00243-4. PubMed DOI
Kittler K., Hurtaud-Pessel D., Maul R., Kolrep F., Fessard V. In vitro metabolism of the cyanotoxin cylindrospermopsin in HepaRG cells and liver tissue fractions. Toxicon. 2016;110:47–50. doi: 10.1016/j.toxicon.2015.11.007. PubMed DOI
Raška J., Čtveráčková L., Dydowiczová A., Sovadinová I., Bláha L., Babica P. Cylindrospermopsin induces cellular stress and activation of ERK1/2 and p38 MAPK pathways in adult human liver stem cells. Chemosphere. 2019;227:43–52. doi: 10.1016/j.chemosphere.2019.03.131. PubMed DOI
Froscio S.M., Humpage A.R., Burcham P.C., Falconer I.R. Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ. Toxicol. 2003;18:243–251. doi: 10.1002/tox.10121. PubMed DOI
Humpage A.R., Falconer I.R. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: Determination of no observed adverse effect level for deriving a drinking water guideline value. Environ. Toxicol. 2003;18:94–103. doi: 10.1002/tox.10104. PubMed DOI
López-Alonso H., Rubiolo J.A., Vega F., Vieytes M.R., Botana L.M. Protein synthesis inhibition and oxidative stress induced by cylindrospermopsin elicit apoptosis in primary rat hepatocytes. Chem. Res. Toxicol. 2012;26:203–212. doi: 10.1021/tx3003438. PubMed DOI
Terao K., Ohmori S., Igarashi K., Ohtani I., Watanabe M., Harada K., Ito E. Electron microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezakia natans. Toxicon. 1994;32:833–843. doi: 10.1016/0041-0101(94)90008-6. PubMed DOI
Liebel S., Ribeiro C.A.D.O., de Magalhães V.F., Silva R.D.C.D., Rossi S.C., Randi M.A.F., Neto F.F. Low concentrations of cylindrospermopsin induce increases of reactive oxygen species levels, metabolism and proliferation in human hepatoma cells (HepG2) Toxicol. Vitr. 2015;29:479–488. doi: 10.1016/j.tiv.2014.12.022. PubMed DOI
Humpage A.R., Fenech M., Thomas P., Falconer I.R. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat. Res. Toxicol. Environ. Mutagen. 2000;472:155–161. doi: 10.1016/S1383-5718(00)00144-3. PubMed DOI
Alja Š., Filipič M., Novak M., Žegura B. Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells. Mar. Drugs. 2013;11:3077–3090. doi: 10.3390/md11083077. PubMed DOI PMC
Lankoff A., Wojcik A., Lisowska H., Bialczyk J., Dziga D., Carmichael W. No induction of structural chromosomal aberrations in cylindrospermopsin-treated CHO-K1 cells without and with metabolic activation. Toxicon. 2007;50:1105–1115. doi: 10.1016/j.toxicon.2007.07.021. PubMed DOI
Žegura B., Gajski G., Štraser A., Garaj-Vrhovac V. Cylindrospermopsin induced DNA damage and alteration in the expression of genes involved in the response to DNA damage, apoptosis and oxidative stress. Toxicon. 2011;58:471–479. doi: 10.1016/j.toxicon.2011.08.005. PubMed DOI
World Health Organization . Cyanobacterial Toxins: Cylindrospermopsins. Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments. World Health Organization; Geneva, Switzerland: 2020. [(accessed on 10 November 2022)]. (WHO/HEP/ECH/WSH/2020.4) Available online: https://apps.who.int/iris/bitstream/handle/10665/338063/WHO-HEP-ECH-WSH-2020.4-eng.pdf?sequence=1&isAllowed=y;
Kubickova B., Babica P., Hilscherová K., Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Eur. 2019;31:31. doi: 10.1186/s12302-019-0212-2. DOI
Chichova M., Tasinov O., Shkodrova M., Mishonova M., Sazdova I., Ilieva B., Doncheva-Stoimenova D., Kiselova-Kaneva Y., Raikova N., Uzunov B., et al. New data on cylindrospermopsin toxicity. Toxins. 2021;13:41. doi: 10.3390/toxins13010041. PubMed DOI PMC
Kubickova B., Laboha P., Hildebrandt J.-P., Hilscherová K., Babica P. Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. Chemosphere. 2018;220:620–628. doi: 10.1016/j.chemosphere.2018.12.157. PubMed DOI
Vennmann J., Edelmann J., Gudra C., Ziesemer S., Hildebrandt J.-P. The cyanotoxin cylindrospermopsin slows down cell cycle progression and extends metaphase duration in immortalised human airway epithelial cells. Toxicon. 2022;209:28–35. doi: 10.1016/j.toxicon.2022.01.013. PubMed DOI
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
Fabregat A., Jupe S., Matthews L., Sidiropoulos K., Gillespie M., Garapati P., Haw R., Jassal B., Korninger F., May B., et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D649–D655. doi: 10.1093/nar/gkx1132. PubMed DOI PMC
Zhuo L., Hascall V.C., Kimata K. Inter-α-trypsin Inhibitor, a Covalent Protein-Glycosaminoglycan-Protein Complex. J. Biol. Chem. 2004;279:38079–38082. doi: 10.1074/jbc.R300039200. PubMed DOI
Changede R., Sheetz M. Integrin and cadherin clusters: A robust way to organize adhesions for cell mechanics. BioEssays. 2016;39:e201600123-12. doi: 10.1002/bies.201600123. PubMed DOI
Schneeberger E.E., Lynch R.D. The tight junction: A multifunctional complex. Am. J. Physiol. Physiol. 2004;286:C1213–C1228. doi: 10.1152/ajpcell.00558.2003. PubMed DOI
Yiu G.K., Chan W.Y., Ng S.-W., Chan P.S., Cheung K.K., Berkowitz R.S., Mok S.C. SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am. J. Pathol. 2001;159:609–622. doi: 10.1016/S0002-9440(10)61732-4. PubMed DOI PMC
Bradshaw A.D. The role of SPARC in extracellular matrix assembly. J. Cell Commun. Signal. 2009;3:239–246. doi: 10.1007/s12079-009-0062-6. PubMed DOI PMC
Peixoto E., Atorrasagasti C., Aquino J.B., Militello R., Bayo J., Fiore E., Piccioni F., Salvatierra E., Alaniz L., García M.G., et al. SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage. Gene Ther. 2014;22:9–19. doi: 10.1038/gt.2014.102. PubMed DOI PMC
Groffen A.J.A., Buskens C.A.F., van Kuppevelt T.H., Veerkamp J.H., Monnens L.A.H., Heuvel L.P.W.J.V.D. Primary structure and high expression of human agrin in basement membranes of adult lung and kidney. JBIC J. Biol. Inorg. Chem. 1998;254:123–128. doi: 10.1046/j.1432-1327.1998.2540123.x. PubMed DOI
Gagnoux-Palacios L., Allegra M., Spirito F., Pommeret O., Romero C., Ortonne J.-P., Meneguzzi G. The short arm of the laminin γ2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J. Cell Biol. 2001;153:835–850. doi: 10.1083/jcb.153.4.835. PubMed DOI PMC
Stetler-Stevenson W.G., Krutzsch H.C., A Liotta L. Tissue Inhibitor of Metalloproteinase (TIMP-2) J. Biol. Chem. 1989;264:17374–17378. doi: 10.1016/S0021-9258(18)71503-2. PubMed DOI
Koval M. Claudin Heterogeneity and Control of Lung Tight Junctions. Annu. Rev. Physiol. 2013;75:551–567. doi: 10.1146/annurev-physiol-030212-183809. PubMed DOI
Günzel D. Claudins: Vital partners in transcellular and paracellular transport coupling. Pflügers Arch. 2016;469:35–44. doi: 10.1007/s00424-016-1909-3. PubMed DOI
Morita E., Sandrin V., Chung H.-Y., Morham S.G., Gygi S.P., Rodesch C.K., I Sundquist W. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 2007;26:4215–4227. doi: 10.1038/sj.emboj.7601850. PubMed DOI PMC
Daviu N., Bruchas M.R., Moghaddam B., Sandi C., Beyeler A. Neurobiological links between stress and anxiety. Neurobiol. Stress. 2019;11:100191. doi: 10.1016/j.ynstr.2019.100191. PubMed DOI PMC
Arquint C., Gabryjonczyk A.-M., Nigg E.A. Centrosomes as signalling centres. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130464. doi: 10.1098/rstb.2013.0464. PubMed DOI PMC
Cheeseman I. The Kinetochore. Cold Spring Harb. Perspect. Biol. 2014;6:a015826. doi: 10.1101/cshperspect.a015826. PubMed DOI PMC
Fulcher L.J., He Z., Mei L., Macartney T.J., Wood N.T., Prescott A.R., Whigham A.J., Varghese J., Gourlay R., Ball G., et al. FAM 83D directs protein kinase CK 1α to the mitotic spindle for proper spindle positioning. EMBO Rep. 2019;20:e47495. doi: 10.15252/embr.201847495. PubMed DOI PMC
Zhu B., Wu Y., Niu L., Yao W., Xue M., Wang H., Yang J., Li J., Fan W. Silencing SAPCD2 Represses proliferation and lung metastasis of fibrosarcoma by activating Hippo signaling pathway. Front. Oncol. 2020;10:574383. doi: 10.3389/fonc.2020.574383. PubMed DOI PMC
Luo Y., Wang L., Ran W., Li G., Xiao Y., Wang X., Zhao H., Xing X. Overexpression of SAPCD2 correlates with proliferation and invasion of colorectal carcinoma cells. Cancer Cell Int. 2020;20:43. doi: 10.1186/s12935-020-1121-6. PubMed DOI PMC
Fabbro M., Zhou B.-B., Takahashi M., Sarcevic B., Lal P., Graham M.E., Gabrielli B.G., Robinson P.J., Nigg E.A., Ono Y., et al. Cdk1/Erk2- and Plk1-Dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell. 2005;9:477–488. doi: 10.1016/j.devcel.2005.09.003. PubMed DOI
Gérard C., Goldbeter A. From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle. Front. Physiol. 2012;3:413. doi: 10.3389/fphys.2012.00413. PubMed DOI PMC
Hu C.-K., Coughlin M., Mitchison T.J. Midbody assembly and its regulation during cytokinesis. Mol. Biol. Cell. 2012;23:1024–1034. doi: 10.1091/mbc.e11-08-0721. PubMed DOI PMC
Russo A.A., Tong L., Lee J.-O., Jeffrey P.D., Pavletich N.P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature. 1998;395:237–243. doi: 10.1038/26155. PubMed DOI
Bockstaele L., Kooken H., Libert F., Paternot S., Dumont J.E., de Launoit Y., Roger P.P., Coulonval K. Regulated activating Thr172 phosphorylation of cyclin-dependent Kinase 4(CDK4): Its relationship with cyclins and CDK “Inhibitors”. Mol. Cell. Biol. 2006;26:5070–5085. doi: 10.1128/MCB.02006-05. PubMed DOI PMC
Stott F.J., Bates S., James M.C., McConnell B.B., Starborg M., Brookes S.M., Palmero I., Ryan K.M., Hara E., Vousden K.H., et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17:5001–5014. doi: 10.1093/emboj/17.17.5001. PubMed DOI PMC
Eymin B., Leduc C., Coll J.-L., Brambilla E., Gazzeri S. p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene. 2003;22:1822–1835. doi: 10.1038/sj.onc.1206303. PubMed DOI
Groth A., Ray-Gallet D., Quivy J.-P., Lukas J., Bartek J., Almouzni G. Human Asf1 Regulates the Flow of S Phase Histones during Replicational Stress. Mol. Cell. 2005;17:301–311. doi: 10.1016/j.molcel.2004.12.018. PubMed DOI
Johnson D.G., Walker C.L. CYCLINS AND CELL CYCLE CHECKPOINTS. Annu. Rev. Pharmacol. Toxicol. 1999;39:295–312. doi: 10.1146/annurev.pharmtox.39.1.295. PubMed DOI
Shen X., Lam P., Shaw G., Wickramasinghe W. Genotoxicity investigation of a cyanobacterial toxin, cylindrospermopsin. Toxicon. 2002;40:1499–1501. doi: 10.1016/S0041-0101(02)00151-4. PubMed DOI
Díez-Quijada L., Hercog K., Štampar M., Filipič M., Cameán A.M., Jos Á., Žegura B. Genotoxic effects of cylindrospermopsin, microcystin-LR and their binary mixture in human hepatocellular carcinoma (HepG2) cell line. Toxins. 2020;12:778. doi: 10.3390/toxins12120778. PubMed DOI PMC
Hudson D.F., Amor D.J., Boys A., Butler K., Williams L., Zhang T., Kalitsis P. Loss of RMI2 increases genome instability and causes a bloom-like syndrome. PLoS Genet. 2016;12:e1006483. doi: 10.1371/journal.pgen.1006483. PubMed DOI PMC
Liebel S., Grötzner S.R., Costa D.D.M., Randi M.A.F., Ribeiro C.A.D.O., Neto F.F. Cylindrospermopsin effects on protein profile of HepG2 cells. Toxicol. Mech. Methods. 2016;26:554–563. doi: 10.1080/15376516.2016.1216209. PubMed DOI
Cozens A.L., Yezzi M.J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W.E., Widdicombe J.H., Gruenert D.C. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1994;10:38–47. doi: 10.1165/ajrcmb.10.1.7507342. PubMed DOI
Gruenert D.C., Willems M., Cassiman J.J., Frizzell R.A. Established cell lines used in cystic fibrosis research. J. Cyst. Fibros. 2004;3((Suppl. S2)):191–196. doi: 10.1016/j.jcf.2004.05.040. PubMed DOI
Ziesemer S., Eiffler I., Schönberg A., Müller C., Hochgräfe F., Beule A.G., Hildebrandt J.-P. Staphylococcus aureus α-toxin induces actin filament remodeling in human airway epithelial model cells. Am. J. Respir. Cell Mol. Biol. 2018;58:482–491. doi: 10.1165/rcmb.2016-0207OC. PubMed DOI
Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006;1:2856–2860. doi: 10.1038/nprot.2006.468. PubMed DOI
Eng J.K., McCormack A.L., Yates J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994;5:976–989. doi: 10.1016/1044-0305(94)80016-2. PubMed DOI
Gessulat S., Schmidt T., Zolg D.P., Samaras P., Schnatbaum K., Zerweck J., Knaute T., Rechenberger J., Delanghe B., Huhmer A., et al. Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods. 2019;16:509–518. doi: 10.1038/s41592-019-0426-7. PubMed DOI
Zolg D.P., Gessulat S., Paschke C., Graber M., Rathke-Kuhnert M., Seefried F., Fitzemeier K., Berg F., Lopez-Ferrer D., Horn D., et al. INFERYS rescoring: Boosting peptide identifications and scoring confidence of database search results. Rapid Commun. Mass Spectrom. 2021:e9128. doi: 10.1002/rcm.9128. PubMed DOI
Käll L., Canterbury J.D., Weston J., Noble W.S., MacCoss M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods. 2007;4:923–925. doi: 10.1038/nmeth1113. PubMed DOI
The M., MacCoss M.J., Noble W.S., Käll L. Fast and Accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J. Am. Soc. Mass Spectrom. 2016;27:1719–1727. doi: 10.1007/s13361-016-1460-7. PubMed DOI PMC