Evaluation of the Properties of PHB Composite Filled with Kaolin Particles for 3D Printing Applications Using the Design of Experiment

. 2022 Nov 19 ; 23 (22) : . [epub] 20221119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430886

Grantová podpora
FCH-S-20-6340 Brno University of Technology
APVV-20-0193 Slovak Research and Development Agency
ITMS2014 +: 313011V358 European Regional Development Fund

In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method "Design of Experiment" (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.

Zobrazit více v PubMed

Savenkova L., Gercberga Z., Nikolaeva V., Dzene A., Bibers I., Kalnin M. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem. 2000;35:573–579. doi: 10.1016/S0032-9592(99)00107-7. DOI

Lenz R.W., Marchessault R.H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI

Sato H., Dybal J., Murakami R., Noda I., Ozaki Y. Infrared and raman spectroscopy and quantum chemistry calculation studies of C–H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J. Mol. Struct. 2005;744–747:35–46. doi: 10.1016/j.molstruc.2004.10.069. DOI

Rahim T.N.A.T., Abdullah A.M., Md Akil H. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym. Rev. 2019;59:589–624. doi: 10.1080/15583724.2019.1597883. DOI

Kramschuster A., Turng L.-S. 17—Fabrication of tissue engineering scaffolds. In: Ebnesajjad S., editor. Handbook of Biopolymers and Biodegradable Plastics. William Andrew Publishing; Boston, MA, USA: 2013. pp. 427–446. (Plastics Design Library) DOI

Zeng J.-H., Liu S.-W., Xiong L., Qiu P., Ding L.-H., Xiong S.-L., Li J.-T., Liao X.-G., Tang Z.-M. Scaffolds for the repair of bone defects in clinical studies: A systematic review. J. Orthop. Surg. Res. 2018;13:33. doi: 10.1186/s13018-018-0724-2. PubMed DOI PMC

Sin L.T., Rahmat A.R., Rahman W.A., Ebnesajjad S. In: Handbook of Biopolymers and Biodegradable Plastics. 1st ed. Ebnesajjad S., editor. William Andrew Publishing; Boston, MA, USA: 2013. [(accessed on 21 July 2022)]. (Plastics Design Library) Available online: https://www.elsevier.com/books/handbook-of-biopolymers-and-biodegradable-plastics/ebnesajjad/978-1-4557-2834-3.

Vitetta L., Coulson S., Thomsen M., Nguyen T., Hall S. Probiotics, D-lactic acidosis, oxidative stress and strain specificity. Gut Microbes. 2017;8:311–322. doi: 10.1080/19490976.2017.1279379. PubMed DOI PMC

Gonzalez Ausejo J., Rydz J., Musioł M., Sikorska W., Sobota M., Włodarczyk J., Adamus G., Janeczek H., Kwiecień I., Hercog A., et al. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym. Degrad. Stab. 2018;152:191–207. doi: 10.1016/j.polymdegradstab.2018.04.024. DOI

Madhavan Nampoothiri K., Nair N.R., John R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010;101:8493–8501. doi: 10.1016/j.biortech.2010.05.092. PubMed DOI

Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates) Int. J. Biol. Macromol. 2020;161:364–376. doi: 10.1016/j.ijbiomac.2020.06.022. PubMed DOI

Saska S., Pires L.C., Cominotte M.A., Mendes L.S., de Oliveira M.F., Maia I.A., da Silva J.V.L., Ribeiro S.J.L., Cirelli J.A. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;89:265–273. doi: 10.1016/j.msec.2018.04.016. PubMed DOI

Findrik Balogová A., Hudák R., Tóth T., Schnitzer M., Feranc J., Bakoš D., Živčák J. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. J. Biotechnol. 2018;284:123–130. doi: 10.1016/j.jbiotec.2018.08.019. PubMed DOI

Wu C.-S., Liao H.-T., Cai Y.-X. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polym. Degrad. Stab. 2017;140:55–63. doi: 10.1016/j.polymdegradstab.2017.04.016. DOI

Vaidya A.A., Collet C., Gaugler M., Lloyd-Jones G. Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater. Today Commun. 2019;19:286–296. doi: 10.1016/j.mtcomm.2019.02.008. DOI

Mousavioun P., George G., Doherty W. Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polym. Degrad. Stab. 2012;97:1114–1122. doi: 10.1016/j.polymdegradstab.2012.04.004. DOI

Uzun G., Aydemir D. Biocomposites from polyhydroxybutyrate and bio-fillers by solvent casting method. Bull. Mater. Sci. 2017;40:383–393. doi: 10.1007/s12034-017-1371-7. DOI

Hwang S., Reyes E.I., Moon K., Rumpf R.C., Kim N.S. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 2015;44:771–777. doi: 10.1007/s11664-014-3425-6. DOI

Nikzad M., Masood S.H., Sbarski I. Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 2011;32:3448–3456. doi: 10.1016/j.matdes.2011.01.056. DOI

Zhong W., Li F., Zhang Z., Song L., Li Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A. 2001;301:125–130. doi: 10.1016/S0921-5093(00)01810-4. DOI

Tekinalp H.L., Kunc V., Velez-Garcia G.M., Duty C.E., Love L.J., Naskar A.K., Blue C.A., Ozcan S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 2014;105:144–150. doi: 10.1016/j.compscitech.2014.10.009. DOI

Weng Z., Wang J., Senthil T., Wu L. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 2016;102:276–283. doi: 10.1016/j.matdes.2016.04.045. DOI

Torrado A.R., Shemelya C.M., English J.D., Lin Y., Wicker R.B., Roberson D.A. Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit. Manuf. 2015;6:16–29. doi: 10.1016/j.addma.2015.02.001. DOI

Mencik P., Melcova V., Kontarova S., Prikryl R., Perdochova D., Repiska M. Biodegradable composite materials based on poly(3-hydroxybutyrate) for 3D printing applications. Mater. Sci. Forum. 2019;955:56–61. doi: 10.4028/www.scientific.net/MSF.955.56. DOI

Tawfik M., Ahmed N., Ward A. Characterization of Kaolin-Filled Polymer Composites. Society of Plastic Engineers; Houston, TX, USA: 2018. [(accessed on 30 October 2022)]. Available online: https://www.researchgate.net/profile/A-Ward/publication/326405402_Characterization_of_kaolin-filled_polymer_composites/links/5b4b1462a6fdccadaecbf1f1/Characterization-of-kaolin-filled-polymer-composites.pdf.

Senatov F., Anisimova N., Kiselevskiy M., Kopylov A., Tcherdyntsev V., Maksimkin A. Polyhydroxybutyrate/hydroxyapatite highly porous scaffold for small bone defects replacement in the nonload-bearing parts. J. Bionic Eng. 2017;14:648–658. doi: 10.1016/S1672-6529(16)60431-6. DOI

Auffray L., Gouge P.-A., Hattali L. Design of experiment analysis on tensile properties of PLA samples produced by fused filament fabrication. Int. J. Adv. Manuf. Technol. 2022;118:4123–4137. doi: 10.1007/s00170-021-08216-7. DOI

Munawar M.A., Schubert D.W., Khan S.M., Rehman M.A.U., Gull N., Islam A., Sabir A., Shafiq M., Haider B., Azam M., et al. Investigation of functional, physical, mechanical and thermal properties of TiO2 embedded polyester hybrid composites: A design of experiment (DoE) study. Prog. Nat. Sci. Mater. Int. 2018;28:266–274. doi: 10.1016/j.pnsc.2017.12.005. DOI

Salahshoori I., Seyfaee A., Babapoor A., Neville F., Moreno-Atanasio R. Evaluation of the effect of silica nanoparticles, temperature and pressure on the performance of PSF/PEG/SiO2 mixed matrix membranes: A molecular dynamics simulation (MD) and design of experiments (DOE) study. J. Mol. Liq. 2021;333:115957. doi: 10.1016/j.molliq.2021.115957. DOI

Kumar S., Priyadarshan, Ghosh S.K. Statistical and computational analysis of an environment-friendly MWCNT/NiSO4 composite materials. J. Manuf. Process. 2021;66:11–26. doi: 10.1016/j.jmapro.2021.04.001. DOI

Menčík P., Přikryl R., Stehnová I., Melčová V., Kontárová S., Figalla S., Alexy P., Bočkaj J. Effect of selected commercial plasticizers on mechanical, thermal, and morphological properties of poly(3-hydroxybutyrate)/poly(lactic acid)/plasticizer biodegradable blends for three-dimensional (3D) print. Materials. 2018;11:E1893. doi: 10.3390/ma11101893. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...