Experimental Investigation of Bi-Directional Flax with Ramie Fibre-Reinforced Phenol-Formaldehyde Hybrid Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36433014
PubMed Central
PMC9694596
DOI
10.3390/polym14224887
PII: polym14224887
Knihovny.cz E-zdroje
- Klíčová slova
- flax, mechanical testing, phenol formaldehyde resin, ramie, scanning electron microscope, vacuum infusion process,
- Publikační typ
- časopisecké články MeSH
Modern research focuses on natural, green, and sustainable materials that can be used to replace conventional materials. Because of their beneficial qualities, natural fibre composites are being thoroughly researched. This research focuses on the development of a flax fibre reinforced with phenol-formaldehyde resin hybridization with ramie fibre through a vacuum infusion process. Eight different sequences were fabricated using a core-sheath structure and were mechanically characterized as per ASTM standards. The fabrication technique influences the adhesion of the matrix with reinforcement. The results also reveal that composite having ramie as a sheath layer and flax as a core delivers good mechanical characteristics compared to vice versa. The laminate H exhibited highest mechanical properties among all the eight laminates produced for this study. It exhibited a tensile strength of 54 MPa, tensile modulus of 0.98 Gpa, elongation of 7.1%, flexural strength of 143 Mpa, and compressive strength of 63.65 Mpa. The stress strain curves revealed that all the laminates exhibited ductile behaviour before failing during the tensile test and flexural test, respectively. The stacking sequence of the laminate H influenced the mechanical properties exhibited by it and its counterparts. A morphological study was carried out to analyse the failure surfaces. Morphological analysis exhibited few defects in the laminate after the tests. The composites developed delivers better mechanical properties than commercial composites available on the market, which can be used in lightweight structural applications.
Zobrazit více v PubMed
Xian G., Guo R., Li C., Wang Y. Mechanical performance evolution and life prediction of prestressed cfrp plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022;293:115719. doi: 10.1016/j.compstruct.2022.115719. DOI
Kalita K., Mallick P.K., Bhoi A.K., Ghadai K.R. Optimizing Drilling Induced Delamination in GFRP Composites using Genetic Algorithm & Particle Swarm Optimisation. Adv. Compos. Lett. 2018;27:096369351802700101.
Behera R.R., Ghadai R.K., Kalita K., Banerjee S. Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int. J. Plast. Technol. 2016;20:424–450. doi: 10.1007/s12588-016-9163-2. DOI
Mouritz A.P., Feih S., Kandare E., Mathys Z., Gibson A.G., Jardin P.E.D., Case S.W., Lattimer B.Y. Review of Fire Structural Modelling of Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2009;40:1800–1814. doi: 10.1016/j.compositesa.2009.09.001. DOI
Dong K., Hu K., Gao W. Fire Behavior of Full-Scale CFRP-Strengthened RC Beams Protected with Different Insulation Systems. J. Asian Arch. Build. Eng. 2016;15:581–588. doi: 10.3130/jaabe.15.581. DOI
Li C., Xian G. Experimental and Modeling Study of the Evolution of Mechanical Properties of PAN-Based Carbon Fibers at Elevated Temperatures. Materials. 2019;12:724. doi: 10.3390/ma12050724. PubMed DOI PMC
Chen Z., He X., Ge J., Fan G., Zhang L., Parvez A.M., Wang G. Controllable fabrication of nanofibrillated cellulose supported HKUST-1 hierarchically porous membranes for highly efficient removal of formaldehyde in air. Ind. Crops Prod. 2022;186:115269. doi: 10.1016/j.indcrop.2022.115269. DOI
Wang Z., Zhao X.L., Xian G., Wu G., Raman R.K.S., Al-Saadi S. Effect of Sustained Load and Seawater and Sea Sand Concrete Environment on Durability of Basalt- and Glass-Fibre Reinforced Polymer (B/GFRP) Bars. Corros. Sci. 2018;138:200–218. doi: 10.1016/j.corsci.2018.04.002. DOI
Fiore V., Calabrese L. Effect of Glass Fiber Hybridization on the Durability in Salt-Fog Environment of Pinned Flax Composites. Polymers. 2021;13:4201. doi: 10.3390/polym13234201. PubMed DOI PMC
Mochane M.J., Mokhena T.C., Mokhothu T.H., Mtibe A., Sadiku E.R., Ray S.S., Ibrahim I.D., Daramola O.O. Recent Progress on Natural Fiber Hybrid Composites for Advanced Applications: A Review. Express Polym. Lett. 2019;13:159–198. doi: 10.3144/expresspolymlett.2019.15. DOI
Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI
Lubis M.A.R., Handika S.O., Sari R.K., Iswanto A.H., Antov P., Kristak L., Lee S.H., Pizzi A. Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin. Polymers. 2022;14:2165. doi: 10.3390/polym14112165. PubMed DOI PMC
Moghtadernejad S., Barjasteh E., Johnson Z., Stolpe T., Banuelos J. Effect of thermo-oxidative aging on surface characteristics of benzoxazine and epoxy copolymer. J. Appl. Polym. Sci. 2021;138:50211. doi: 10.1002/app.50211. DOI
He L., Li W., Chen D., Zhou D., Lu G., Yuan J. Effects of Amino Silicone Oil Modification on Properties of Ramie Fiber and Ramie Fiber/Polypropylene Composites. Mater. Eng. 2015;77:142–148. doi: 10.1016/j.matdes.2015.03.051. DOI
Aristri M.A., Lubis M.A.R., Laksana R.P.B., Sari R.K., Iswanto A.H., Kristak L., Antov P., Pizzi A. Thermal and Mechanical Performance of Ramie Fibers Modified with Polyurethane Resins Derived from Acacia Mangium Bark Tannin. J. Mater. Res. Technol. 2022;18:2413–2427. doi: 10.1016/j.jmrt.2022.03.131. DOI
Liu Z.-T., Yang Y., Zhang L., Liu Z.W., Xiong H. Study on the Cationic Modification and Dyeing of Ramie Fiber. Cellulose. 2007;14:337–345. doi: 10.1007/s10570-007-9117-0. DOI
Pandey J.K., Ahn S.H., Lee C.S., Mohanty A.K., Misra M. Recent Advances in the Application of Natural Fibre Based Composites. Macromol. Mater. Eng. 2010;295:975–989. doi: 10.1002/mame.201000095. DOI
Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fibre reinforced polymer composites. Compos. Part B Eng. 2011;42:856–873. doi: 10.1016/j.compositesb.2011.01.010. DOI
Peças P., Carvalho H., Salman H., Leite M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018;2:66. doi: 10.3390/jcs2040066. DOI
Luo G., Xie J., Liu J., Zhang Q., Luo Y., Li M., Jiang Z. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chem. Eng. J. 2023;451:138549. doi: 10.1016/j.cej.2022.138549. DOI
Naveen J., Jawaid M., Zainudin E.S., Sultan M.T.H., Yahaya R. Mechanical and Moisture Diffusion Behaviour of Hybrid Kevlar/Cocos Nucifera Sheath Reinforced Epoxy Composites. J. Mater. Res. Technol. 2019;8:1308–1318. doi: 10.1016/j.jmrt.2018.07.023. DOI
Giridharan R. Preparation and property evaluation of Glass/Ramie fibres reinforced epoxy hybrid composites. Compos. Part B Eng. 2019;167:342–345. doi: 10.1016/j.compositesb.2018.12.049. DOI
Zhang Y., Wen B., Cao L., Li X., Zhang J. Preparation and properties of unmodified ramie fibre reinforced polypropylene composites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2015;30:198–202. doi: 10.1007/s11595-015-1125-6. DOI
Torres-Arellano M., Renteria-Rodríguez V., Franco-Urquiza E. Mechanical Properties of Natural-Fibre-Reinforced Biobased Epoxy Resins Manufactured by Resin Infusion Process. Polymers. 2020;12:2841. doi: 10.3390/polym12122841. PubMed DOI PMC
Li W., Krehl J., Gillespie J.W., Heider D., Endrulat M., Hochrein K., Dubois C.J. Process and Performance Evaluation of the Vacuum-Assisted Process. J. Compos. Mater. 2004;38:1803–1814. doi: 10.1177/0021998304044769. DOI
Hsiao K.-T., Heider D. Manufacturing Techniques for Polymer Matrix Composites (PMCs) Woodhead Publishing; Sawston, UK: 2012. Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites; pp. 310–347. DOI
Cicala G., Pergolizzi E., Piscopo F., Carbone D., Recca G. Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin. Compos. Part B Eng. 2018;132:69–76. doi: 10.1016/j.compositesb.2017.08.015. DOI
Sanjeevi S., Shanmugam V., Kumar S., Ganesan V., Sas G., Johnson D.J., Das O. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci. Rep. 2021;11:13385. doi: 10.1038/s41598-021-92457-9. PubMed DOI PMC
Dilfi K.F.A., Che Z.J., Xian G.J. Grafting of Nano-Silica onto Ramie Fiber for Enhanced Mechanical and Interfacial Properties of Ramie/Epoxy Composite. J. Zhejiang Univ. Sci. A. 2019;20:660–674. doi: 10.1631/jzus.A1900186. DOI
Chen M., Lu Z. Load Transfer Mechanism of the Composites Incorporating Nanohybrid Shish-Kebab Structures. Compos. Struct. 2015;121:247–257. doi: 10.1016/j.compstruct.2014.11.024. DOI
Swamy R.P., Kumar G.C.M., Vrushabhendrappa Y., Joseph V. Study of Areca-Reinforced Phenol Formaldehyde Composites. J. Reinf. Plast. Compos. 2004;23:1373–1382. doi: 10.1177/0731684404037049. DOI
Thakur V.K., Singha A.S. Mechanical and Water Absorption Properties of Natural Fibres/Polymer Biocom-posites. Polym. -Plast. Technol. Eng. 2010;49:694–700. doi: 10.1080/03602551003682067. DOI
Joseph S., Sreekala M.S., Oommen Z., Koshy P., Thomas S. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 2002;62:1857–1868. doi: 10.1016/S0266-3538(02)00098-2. DOI
Sathyaseelan P., Sellamuthu P., Palanimuthu L. Influence of stacking sequence on mechanical properties of areca-kenaf fibre-reinforced polymer hybrid composite. J. Nat. Fibres. 2020;19:369–381.
Dunne R., Desai D., Sadiku R., Jayaramudu J. A review of natural fibres, their sustainability and automotive applications. J. Reinf. Plast. Compos. 2016;35:1041–1050. doi: 10.1177/0731684416633898. DOI
Lotfi A., Li H., Dao D.V., Prusty G. Natural fibre-reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2019;34:238–284. doi: 10.1177/0892705719844546. DOI
Sujon M.A.S., Habib M.A., Abedin M.Z. Experimental investigation of the mechanical and water absorption properties on fibre stacking sequence and orientation of jute/carbon epoxy hybrid composites. J. Mater. Res. Technol. 2020;9:10970–10981. doi: 10.1016/j.jmrt.2020.07.079. DOI
EL-Wazery M.S., El-Kelity A.M.E., Elsad R.A. Effect of Water Absorption on the Tensile Characteristics of Natural/Synthetic Fabrics Reinforced Hybrid Composites. Int. J. Eng. 2020;33:2339–2446.
Da Silva R.V., Voltz H., Filho A.I., Milagre M.X., Machado C.D.C. Hybrid composites with glass fibre and natural fibres of sisal, coir, and luffa sponge. J. Compos. Mater. 2020;55:717–728. doi: 10.1177/0021998320957725. DOI
Fabris H.J., Knauss W.G. Synthetic Polymer Adhesives. Elsevier; Amsterdam, The Netherlands: 1989. Comprehensive Polymer Science and Supplements; pp. 131–177. DOI
Roy A., Naskar A., Ghosh A., Adhikari J., Saha P., Ghosh M. Hybrid Plastics and Natural Materials. Reference Module in Materials Science and Materials Engineering. Elsevier; Amsterdam, The Netherlands: 2021. DOI
Raja T., Ravi S., Karthick A., Afzal A., Saleh B., Arunkumar M., Prasath S. Comparative Study of Mechanical Properties and Thermal Stability on Banyan/Ramie Fibre-Reinforced Hybrid Polymer Composite. Adv. Mater. Sci. Eng. 2021;2021:5835867. doi: 10.1155/2021/5835867. DOI
Mohanavel V., Raja T., Yadav A., Ravichandran M., Winczek J. Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites. J. Nat. Fibres. 2021:1–11. doi: 10.1080/15440478.2021.1958432. DOI
Bajpai P.K., Singh I., Madaan J. Development and Characterization of PLA-Based Green Composites: A Review. J. Thermoplast. Compos. Mater. 2014;27:52–81. doi: 10.1177/0892705712439571. DOI
Gomes A., Matsuo T., Goda K., Ohgi J. Development and Effect of Alkali Treatment on Tensile Properties of Curaua Fiber Green Composites. Compos. Part A Appl. Sci. Manuf. 2007;38:1811–1820. doi: 10.1016/j.compositesa.2007.04.010. DOI
He L.P., Tian Y., Wang L.L. Study on Ramie Fibre Reinforced Polypropylene Composites (RF-PP) and its Mechanical Properties. Adv. Mater. Res. 2008;41–42:313–316. doi: 10.4028/www.scientific.net/AMR.41-42.313. DOI
Ashok D., Puhan S., Pradhan R., Babu P.K., Reddy Y.S. An Experimental Investigation of New Hybrid Composite Material Using Ramie-Flax and Its Mechanical Properties through Finite Element Method. Recent Trends Mech. Eng. 2020:431–446. doi: 10.1007/978-981-15-1124-0_37. DOI
Gupta S., Haq M.I.U., Mohan S., Anand A., Raina A., Dutta V., Kumar R. Evaluation of mechanical properties of ramie/banana reinforced hybrid composites. J. Mech. Eng. (JMechE) 2019;1:95–104.
Yousif B.F., Shalwan A., Chin C.W., Ming K.C. Flexural Properties of Treated and Untreated Kenaf/Epoxy Composites. Mater. Eng. 2012;40:378–385. doi: 10.1016/j.matdes.2012.04.017. DOI
Vedanarayanan V., Kumar B.S.P., Karuna M.S., Jayanthi A., Kumar K.V.P., Radha A., Christopher D. Experimental Investigation on Mechanical Behaviour of Kevlar and Ramie Fibre Reinforced Epoxy Composites. J. Nanomater. 2022;2022:8802222. doi: 10.1155/2022/8802222. DOI
Herrera-Franco P.J., Valadez-González A. A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites. Compos. B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI
Biswas S., Kindo S., Patnaik A. Effect of fibre length on mechanical behavior of coir fibre reinforced epoxy composites. Fibres Polym. 2011;12:73–78. doi: 10.1007/s12221-011-0073-9. DOI
Kumar R., Anand A. Fabrication and mechanical characterization of Indian ramie reinforced polymer compo-sites. Mater. Res. Express. 2019;6:055303. doi: 10.1088/2053-1591/aaff12. DOI
Almeida Pontes L.D., Netto P.A., Ferreira J.B., Margem F.M., Monteiro S.N. Flexural Mechanical Character-ization of Polyester Composites Reinforced with Ramie Fibres. Charact. Miner. Met. Mater. 2016:385–390. doi: 10.1002/9781119263722.ch47. DOI
Kapila K., Samanta S., Kirtania S. Recent Advances in Mechanical Engineering. Springer; Singapore: 2021. Fabrication and Characterization of Ramie Fibre Based Hybrid Composites; pp. 839–848. (Lecture Notes in Mechanical Engineering). DOI
Ramesh M., Rajeshkumar L., Balaji D. Mechanical and Dynamic Properties of Ramie Fibre-Reinforced Composites. Mech. Dyn. Prop. Biocomposites. 2021:275–291. doi: 10.1002/9783527822331.ch15. DOI
Srinivasan V.S., Boopathy S.R., Sangeetha D., Ramnath B.V. Evaluation of Mechanical and Thermal Properties of Banana–Flax Based Natural Fibre Composite. Mater. Eng. 2014;60:620–627. doi: 10.1016/j.matdes.2014.03.014. DOI
Sarwar A., Mahboob Z., Zdero R., Bougherara H. Mechanical Characterization of a New Kevlar/Flax/Epoxy Hybrid Composite in a Sandwich Structure. Polym. Test. 2020;90:106680. doi: 10.1016/j.polymertesting.2020.106680. DOI
Haameem J.A.M., Majid M.S.A., Afendi M., Marzuki H.F.A., Fahmi I., Gibson A.G. Mechanical Properties of Napier Grass Fibre/Polyester Composites. Compos. Struct. 2016;136:1–10. doi: 10.1016/j.compstruct.2015.09.051. DOI
Özturk S. Effect of Fiber Loading on the Mechanical Properties of Kenaf and Fiberfrax Fiber-Reinforced Phenol-Formaldehyde Composites. J. Compos. Mater. 2010;44:2265–2288. doi: 10.1177/0021998310364265. DOI
Chaudhary V., Bajpai P.K., Maheshwari S. Studies on Mechanical and Morphological Characterization of Developed Jute/Hemp/Flax Reinforced Hybrid Composites for Structural Applications. J. Nat. Fibers. 2018;15:80–97. doi: 10.1080/15440478.2017.1320260. DOI
Zhong J.B., Lv J., Wei C. Mechanical properties of sisal fibre reinforced Ureaformaldehyde resin composites. Express Polym. Lett. 2007;10:681–687. doi: 10.3144/expresspolymlett.2007.93. DOI