Experimental Investigation of Bi-Directional Flax with Ramie Fibre-Reinforced Phenol-Formaldehyde Hybrid Composites

. 2022 Nov 12 ; 14 (22) : . [epub] 20221112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36433014

Modern research focuses on natural, green, and sustainable materials that can be used to replace conventional materials. Because of their beneficial qualities, natural fibre composites are being thoroughly researched. This research focuses on the development of a flax fibre reinforced with phenol-formaldehyde resin hybridization with ramie fibre through a vacuum infusion process. Eight different sequences were fabricated using a core-sheath structure and were mechanically characterized as per ASTM standards. The fabrication technique influences the adhesion of the matrix with reinforcement. The results also reveal that composite having ramie as a sheath layer and flax as a core delivers good mechanical characteristics compared to vice versa. The laminate H exhibited highest mechanical properties among all the eight laminates produced for this study. It exhibited a tensile strength of 54 MPa, tensile modulus of 0.98 Gpa, elongation of 7.1%, flexural strength of 143 Mpa, and compressive strength of 63.65 Mpa. The stress strain curves revealed that all the laminates exhibited ductile behaviour before failing during the tensile test and flexural test, respectively. The stacking sequence of the laminate H influenced the mechanical properties exhibited by it and its counterparts. A morphological study was carried out to analyse the failure surfaces. Morphological analysis exhibited few defects in the laminate after the tests. The composites developed delivers better mechanical properties than commercial composites available on the market, which can be used in lightweight structural applications.

Zobrazit více v PubMed

Xian G., Guo R., Li C., Wang Y. Mechanical performance evolution and life prediction of prestressed cfrp plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022;293:115719. doi: 10.1016/j.compstruct.2022.115719. DOI

Kalita K., Mallick P.K., Bhoi A.K., Ghadai K.R. Optimizing Drilling Induced Delamination in GFRP Composites using Genetic Algorithm & Particle Swarm Optimisation. Adv. Compos. Lett. 2018;27:096369351802700101.

Behera R.R., Ghadai R.K., Kalita K., Banerjee S. Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int. J. Plast. Technol. 2016;20:424–450. doi: 10.1007/s12588-016-9163-2. DOI

Mouritz A.P., Feih S., Kandare E., Mathys Z., Gibson A.G., Jardin P.E.D., Case S.W., Lattimer B.Y. Review of Fire Structural Modelling of Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2009;40:1800–1814. doi: 10.1016/j.compositesa.2009.09.001. DOI

Dong K., Hu K., Gao W. Fire Behavior of Full-Scale CFRP-Strengthened RC Beams Protected with Different Insulation Systems. J. Asian Arch. Build. Eng. 2016;15:581–588. doi: 10.3130/jaabe.15.581. DOI

Li C., Xian G. Experimental and Modeling Study of the Evolution of Mechanical Properties of PAN-Based Carbon Fibers at Elevated Temperatures. Materials. 2019;12:724. doi: 10.3390/ma12050724. PubMed DOI PMC

Chen Z., He X., Ge J., Fan G., Zhang L., Parvez A.M., Wang G. Controllable fabrication of nanofibrillated cellulose supported HKUST-1 hierarchically porous membranes for highly efficient removal of formaldehyde in air. Ind. Crops Prod. 2022;186:115269. doi: 10.1016/j.indcrop.2022.115269. DOI

Wang Z., Zhao X.L., Xian G., Wu G., Raman R.K.S., Al-Saadi S. Effect of Sustained Load and Seawater and Sea Sand Concrete Environment on Durability of Basalt- and Glass-Fibre Reinforced Polymer (B/GFRP) Bars. Corros. Sci. 2018;138:200–218. doi: 10.1016/j.corsci.2018.04.002. DOI

Fiore V., Calabrese L. Effect of Glass Fiber Hybridization on the Durability in Salt-Fog Environment of Pinned Flax Composites. Polymers. 2021;13:4201. doi: 10.3390/polym13234201. PubMed DOI PMC

Mochane M.J., Mokhena T.C., Mokhothu T.H., Mtibe A., Sadiku E.R., Ray S.S., Ibrahim I.D., Daramola O.O. Recent Progress on Natural Fiber Hybrid Composites for Advanced Applications: A Review. Express Polym. Lett. 2019;13:159–198. doi: 10.3144/expresspolymlett.2019.15. DOI

Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI

Lubis M.A.R., Handika S.O., Sari R.K., Iswanto A.H., Antov P., Kristak L., Lee S.H., Pizzi A. Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin. Polymers. 2022;14:2165. doi: 10.3390/polym14112165. PubMed DOI PMC

Moghtadernejad S., Barjasteh E., Johnson Z., Stolpe T., Banuelos J. Effect of thermo-oxidative aging on surface characteristics of benzoxazine and epoxy copolymer. J. Appl. Polym. Sci. 2021;138:50211. doi: 10.1002/app.50211. DOI

He L., Li W., Chen D., Zhou D., Lu G., Yuan J. Effects of Amino Silicone Oil Modification on Properties of Ramie Fiber and Ramie Fiber/Polypropylene Composites. Mater. Eng. 2015;77:142–148. doi: 10.1016/j.matdes.2015.03.051. DOI

Aristri M.A., Lubis M.A.R., Laksana R.P.B., Sari R.K., Iswanto A.H., Kristak L., Antov P., Pizzi A. Thermal and Mechanical Performance of Ramie Fibers Modified with Polyurethane Resins Derived from Acacia Mangium Bark Tannin. J. Mater. Res. Technol. 2022;18:2413–2427. doi: 10.1016/j.jmrt.2022.03.131. DOI

Liu Z.-T., Yang Y., Zhang L., Liu Z.W., Xiong H. Study on the Cationic Modification and Dyeing of Ramie Fiber. Cellulose. 2007;14:337–345. doi: 10.1007/s10570-007-9117-0. DOI

Pandey J.K., Ahn S.H., Lee C.S., Mohanty A.K., Misra M. Recent Advances in the Application of Natural Fibre Based Composites. Macromol. Mater. Eng. 2010;295:975–989. doi: 10.1002/mame.201000095. DOI

Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fibre reinforced polymer composites. Compos. Part B Eng. 2011;42:856–873. doi: 10.1016/j.compositesb.2011.01.010. DOI

Peças P., Carvalho H., Salman H., Leite M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018;2:66. doi: 10.3390/jcs2040066. DOI

Luo G., Xie J., Liu J., Zhang Q., Luo Y., Li M., Jiang Z. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chem. Eng. J. 2023;451:138549. doi: 10.1016/j.cej.2022.138549. DOI

Naveen J., Jawaid M., Zainudin E.S., Sultan M.T.H., Yahaya R. Mechanical and Moisture Diffusion Behaviour of Hybrid Kevlar/Cocos Nucifera Sheath Reinforced Epoxy Composites. J. Mater. Res. Technol. 2019;8:1308–1318. doi: 10.1016/j.jmrt.2018.07.023. DOI

Giridharan R. Preparation and property evaluation of Glass/Ramie fibres reinforced epoxy hybrid composites. Compos. Part B Eng. 2019;167:342–345. doi: 10.1016/j.compositesb.2018.12.049. DOI

Zhang Y., Wen B., Cao L., Li X., Zhang J. Preparation and properties of unmodified ramie fibre reinforced polypropylene composites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2015;30:198–202. doi: 10.1007/s11595-015-1125-6. DOI

Torres-Arellano M., Renteria-Rodríguez V., Franco-Urquiza E. Mechanical Properties of Natural-Fibre-Reinforced Biobased Epoxy Resins Manufactured by Resin Infusion Process. Polymers. 2020;12:2841. doi: 10.3390/polym12122841. PubMed DOI PMC

Li W., Krehl J., Gillespie J.W., Heider D., Endrulat M., Hochrein K., Dubois C.J. Process and Performance Evaluation of the Vacuum-Assisted Process. J. Compos. Mater. 2004;38:1803–1814. doi: 10.1177/0021998304044769. DOI

Hsiao K.-T., Heider D. Manufacturing Techniques for Polymer Matrix Composites (PMCs) Woodhead Publishing; Sawston, UK: 2012. Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites; pp. 310–347. DOI

Cicala G., Pergolizzi E., Piscopo F., Carbone D., Recca G. Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin. Compos. Part B Eng. 2018;132:69–76. doi: 10.1016/j.compositesb.2017.08.015. DOI

Sanjeevi S., Shanmugam V., Kumar S., Ganesan V., Sas G., Johnson D.J., Das O. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci. Rep. 2021;11:13385. doi: 10.1038/s41598-021-92457-9. PubMed DOI PMC

Dilfi K.F.A., Che Z.J., Xian G.J. Grafting of Nano-Silica onto Ramie Fiber for Enhanced Mechanical and Interfacial Properties of Ramie/Epoxy Composite. J. Zhejiang Univ. Sci. A. 2019;20:660–674. doi: 10.1631/jzus.A1900186. DOI

Chen M., Lu Z. Load Transfer Mechanism of the Composites Incorporating Nanohybrid Shish-Kebab Structures. Compos. Struct. 2015;121:247–257. doi: 10.1016/j.compstruct.2014.11.024. DOI

Swamy R.P., Kumar G.C.M., Vrushabhendrappa Y., Joseph V. Study of Areca-Reinforced Phenol Formaldehyde Composites. J. Reinf. Plast. Compos. 2004;23:1373–1382. doi: 10.1177/0731684404037049. DOI

Thakur V.K., Singha A.S. Mechanical and Water Absorption Properties of Natural Fibres/Polymer Biocom-posites. Polym. -Plast. Technol. Eng. 2010;49:694–700. doi: 10.1080/03602551003682067. DOI

Joseph S., Sreekala M.S., Oommen Z., Koshy P., Thomas S. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 2002;62:1857–1868. doi: 10.1016/S0266-3538(02)00098-2. DOI

Sathyaseelan P., Sellamuthu P., Palanimuthu L. Influence of stacking sequence on mechanical properties of areca-kenaf fibre-reinforced polymer hybrid composite. J. Nat. Fibres. 2020;19:369–381.

Dunne R., Desai D., Sadiku R., Jayaramudu J. A review of natural fibres, their sustainability and automotive applications. J. Reinf. Plast. Compos. 2016;35:1041–1050. doi: 10.1177/0731684416633898. DOI

Lotfi A., Li H., Dao D.V., Prusty G. Natural fibre-reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2019;34:238–284. doi: 10.1177/0892705719844546. DOI

Sujon M.A.S., Habib M.A., Abedin M.Z. Experimental investigation of the mechanical and water absorption properties on fibre stacking sequence and orientation of jute/carbon epoxy hybrid composites. J. Mater. Res. Technol. 2020;9:10970–10981. doi: 10.1016/j.jmrt.2020.07.079. DOI

EL-Wazery M.S., El-Kelity A.M.E., Elsad R.A. Effect of Water Absorption on the Tensile Characteristics of Natural/Synthetic Fabrics Reinforced Hybrid Composites. Int. J. Eng. 2020;33:2339–2446.

Da Silva R.V., Voltz H., Filho A.I., Milagre M.X., Machado C.D.C. Hybrid composites with glass fibre and natural fibres of sisal, coir, and luffa sponge. J. Compos. Mater. 2020;55:717–728. doi: 10.1177/0021998320957725. DOI

Fabris H.J., Knauss W.G. Synthetic Polymer Adhesives. Elsevier; Amsterdam, The Netherlands: 1989. Comprehensive Polymer Science and Supplements; pp. 131–177. DOI

Roy A., Naskar A., Ghosh A., Adhikari J., Saha P., Ghosh M. Hybrid Plastics and Natural Materials. Reference Module in Materials Science and Materials Engineering. Elsevier; Amsterdam, The Netherlands: 2021. DOI

Raja T., Ravi S., Karthick A., Afzal A., Saleh B., Arunkumar M., Prasath S. Comparative Study of Mechanical Properties and Thermal Stability on Banyan/Ramie Fibre-Reinforced Hybrid Polymer Composite. Adv. Mater. Sci. Eng. 2021;2021:5835867. doi: 10.1155/2021/5835867. DOI

Mohanavel V., Raja T., Yadav A., Ravichandran M., Winczek J. Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites. J. Nat. Fibres. 2021:1–11. doi: 10.1080/15440478.2021.1958432. DOI

Bajpai P.K., Singh I., Madaan J. Development and Characterization of PLA-Based Green Composites: A Review. J. Thermoplast. Compos. Mater. 2014;27:52–81. doi: 10.1177/0892705712439571. DOI

Gomes A., Matsuo T., Goda K., Ohgi J. Development and Effect of Alkali Treatment on Tensile Properties of Curaua Fiber Green Composites. Compos. Part A Appl. Sci. Manuf. 2007;38:1811–1820. doi: 10.1016/j.compositesa.2007.04.010. DOI

He L.P., Tian Y., Wang L.L. Study on Ramie Fibre Reinforced Polypropylene Composites (RF-PP) and its Mechanical Properties. Adv. Mater. Res. 2008;41–42:313–316. doi: 10.4028/www.scientific.net/AMR.41-42.313. DOI

Ashok D., Puhan S., Pradhan R., Babu P.K., Reddy Y.S. An Experimental Investigation of New Hybrid Composite Material Using Ramie-Flax and Its Mechanical Properties through Finite Element Method. Recent Trends Mech. Eng. 2020:431–446. doi: 10.1007/978-981-15-1124-0_37. DOI

Gupta S., Haq M.I.U., Mohan S., Anand A., Raina A., Dutta V., Kumar R. Evaluation of mechanical properties of ramie/banana reinforced hybrid composites. J. Mech. Eng. (JMechE) 2019;1:95–104.

Yousif B.F., Shalwan A., Chin C.W., Ming K.C. Flexural Properties of Treated and Untreated Kenaf/Epoxy Composites. Mater. Eng. 2012;40:378–385. doi: 10.1016/j.matdes.2012.04.017. DOI

Vedanarayanan V., Kumar B.S.P., Karuna M.S., Jayanthi A., Kumar K.V.P., Radha A., Christopher D. Experimental Investigation on Mechanical Behaviour of Kevlar and Ramie Fibre Reinforced Epoxy Composites. J. Nanomater. 2022;2022:8802222. doi: 10.1155/2022/8802222. DOI

Herrera-Franco P.J., Valadez-González A. A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites. Compos. B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI

Biswas S., Kindo S., Patnaik A. Effect of fibre length on mechanical behavior of coir fibre reinforced epoxy composites. Fibres Polym. 2011;12:73–78. doi: 10.1007/s12221-011-0073-9. DOI

Kumar R., Anand A. Fabrication and mechanical characterization of Indian ramie reinforced polymer compo-sites. Mater. Res. Express. 2019;6:055303. doi: 10.1088/2053-1591/aaff12. DOI

Almeida Pontes L.D., Netto P.A., Ferreira J.B., Margem F.M., Monteiro S.N. Flexural Mechanical Character-ization of Polyester Composites Reinforced with Ramie Fibres. Charact. Miner. Met. Mater. 2016:385–390. doi: 10.1002/9781119263722.ch47. DOI

Kapila K., Samanta S., Kirtania S. Recent Advances in Mechanical Engineering. Springer; Singapore: 2021. Fabrication and Characterization of Ramie Fibre Based Hybrid Composites; pp. 839–848. (Lecture Notes in Mechanical Engineering). DOI

Ramesh M., Rajeshkumar L., Balaji D. Mechanical and Dynamic Properties of Ramie Fibre-Reinforced Composites. Mech. Dyn. Prop. Biocomposites. 2021:275–291. doi: 10.1002/9783527822331.ch15. DOI

Srinivasan V.S., Boopathy S.R., Sangeetha D., Ramnath B.V. Evaluation of Mechanical and Thermal Properties of Banana–Flax Based Natural Fibre Composite. Mater. Eng. 2014;60:620–627. doi: 10.1016/j.matdes.2014.03.014. DOI

Sarwar A., Mahboob Z., Zdero R., Bougherara H. Mechanical Characterization of a New Kevlar/Flax/Epoxy Hybrid Composite in a Sandwich Structure. Polym. Test. 2020;90:106680. doi: 10.1016/j.polymertesting.2020.106680. DOI

Haameem J.A.M., Majid M.S.A., Afendi M., Marzuki H.F.A., Fahmi I., Gibson A.G. Mechanical Properties of Napier Grass Fibre/Polyester Composites. Compos. Struct. 2016;136:1–10. doi: 10.1016/j.compstruct.2015.09.051. DOI

Özturk S. Effect of Fiber Loading on the Mechanical Properties of Kenaf and Fiberfrax Fiber-Reinforced Phenol-Formaldehyde Composites. J. Compos. Mater. 2010;44:2265–2288. doi: 10.1177/0021998310364265. DOI

Chaudhary V., Bajpai P.K., Maheshwari S. Studies on Mechanical and Morphological Characterization of Developed Jute/Hemp/Flax Reinforced Hybrid Composites for Structural Applications. J. Nat. Fibers. 2018;15:80–97. doi: 10.1080/15440478.2017.1320260. DOI

Zhong J.B., Lv J., Wei C. Mechanical properties of sisal fibre reinforced Ureaformaldehyde resin composites. Express Polym. Lett. 2007;10:681–687. doi: 10.3144/expresspolymlett.2007.93. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...