A New Decentralized Robust Secondary Control for Smart Islanded Microgrids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36433307
PubMed Central
PMC9694667
DOI
10.3390/s22228709
PII: s22228709
Knihovny.cz E-zdroje
- Klíčová slova
- artificial neural network, distribution generators, genetic algorithm, microgrid, power sharing, secondary control, virtual impedance,
- MeSH
- elektrická impedance MeSH
- elektřina * MeSH
- neuronové sítě MeSH
- počítačová simulace MeSH
- zdroje elektrické energie * MeSH
- Publikační typ
- časopisecké články MeSH
Dealing with the islanded operation of a microgrid (MG), the micro sources must cooperate autonomously to regulate the voltage and frequency of the local power grid. Droop controller-based primary control is a method typically used to self-regulate voltage and frequency. The first problem of the droop method is that in a steady state, the microgrid's frequency and voltage deviate from their nominal values. The second concerns the power-sharing issue related to mismatched power line impedances between Distribution Generators (DGs) and MGs. A Secondary Control Unit (SCU) must be used as a high-level controller for droop-based primary control to address the first problem. This paper proposed a decentralized SCU scheme to deal with this issue using optimized PI controllers based on a Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The GA provides the appropriate adjustment parameters for all adopted PI controllers in the primary control-based voltage and current control loops and SCU-based voltage and frequency loops. ANNs are additionally activated in SCUs to provide precise online control parameter modification. In the proposed control structure, a virtual impedance method is adopted in the primary control scheme to address the power-sharing problem of parallel DGs. Further, in this paper, one of the main objectives includes electricity transmission over long distances using Low-Voltage DC Transmission (LVDCT) systems to reduce power losses and eradicate reactive power problems. Voltage Source Inverters (VSIs) are adopted to convert the DC electrical energy into AC near the consumer loads. The simulation results illustrated the feasibility of the proposed solutions in restoring voltage and frequency deviations, reducing line losses, as well as achieving active and reactive power sharing among the DGs connected to the MG.
Department of Communications Engineering Iraq University College Basrah 61001 Iraq
Electrical Engineering Department University of Basrah Basrah 61001 Iraq
Zobrazit více v PubMed
Alhasnawi B.N., Jasim B.H., Issa W., Anvari-Moghaddam A., Blaabjerg F. A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications. Energies. 2020;13:3480. doi: 10.3390/en13133480. DOI
Alhasnawi B.N., Jasim B.H., Esteban M.D. A New Robust Energy Management and Control Strategy for a Hybrid Microgrid System Based on Green Energy. Sustainability. 2020;12:5724. doi: 10.3390/su12145724. DOI
Jasim A.M., Jasim B.H., Kraiem H., Flah A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System. Sustainability. 2022;14:10158. doi: 10.3390/su141610158. DOI
Alhasnawi B.N., Jasim B.H., Sedhom B.E. Distributed secondary consensus fault tolerant control method for voltage and frequency restoration and power sharing control in multi-agent microgrid. Electr. Power Energy Syst. 2021;133:107251. doi: 10.1016/j.ijepes.2021.107251. DOI
Lopez-Garcia T.B., Coronado-Mendoza A., Domínguez-Navarro J.A. Artificial neural networks in microgrids: A review. Eng. Appl. Artif. Intell. 2020;95:103894. doi: 10.1016/j.engappai.2020.103894. DOI
Wu T., Wang J. Artificial intelligence for operation and control: The case of microgrids. Electr. J. 2021;34:106890. doi: 10.1016/j.tej.2020.106890. DOI
Trivedi R., Khadem S. Implementation of artificial intelligence techniques in microgrid control environment: Current progress and future scopes. Energy AI. 2022;8:100147. doi: 10.1016/j.egyai.2022.100147. DOI
Vandoorn T.L., Vasquez J.C., De Kooning J., Guerrero J.M., Vandevelde L. Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. IEEE Ind. Electron. Mag. 2013;7:42–55. doi: 10.1109/MIE.2013.2279306. DOI
Bidram A., Davoudi A. Hierarchical Structure of Microgrids Control System. IEEE Trans. Smart Grid. 2012;3:1963–1976. doi: 10.1109/TSG.2012.2197425. DOI
Micallef A., Apap M., Spiteri-Staines C., Guerrero J.M., Vasquez J.C. Reactive Power Sharing and Voltage Harmonic Distortion Compensation of Droop Controlled Single Phase Islanded Microgrids. IEEE Trans. Smart Grid. 2014;5:1149–1158. doi: 10.1109/TSG.2013.2291912. DOI
Nejabatkhah F., Li Y.W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2014;30:7072–7089. doi: 10.1109/TPEL.2014.2384999. DOI
Zeng Z., Yang H., Zhao R., Cheng C. Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review. Renew. Sustain. Energy Rev. 2013;24:223–270. doi: 10.1016/j.rser.2013.03.033. DOI
Görbe P., Magyar A., Hangos K.M. Reduction of power losses with smart grids fueled with renewable sources and applying EV batteries. J. Clean. Prod. 2012;34:125–137. doi: 10.1016/j.jclepro.2011.12.021. DOI
Jiayi H., Chuanwen J., Rong X. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008;12:2472–2483. doi: 10.1016/j.rser.2007.06.004. DOI
Ström K.J., Hägglund T. Advanced PID control. Instrum. Syst. Autom. Soc. 2006;73:76–78.
Pogaku N., Prodanovic M., Green T.C. Modeling, analysis and testing of autonomous operation of an inverter-based mi-crogrid. IEEE Trans. Power Electron. 2007;22:613–625. doi: 10.1109/TPEL.2006.890003. DOI
Katiraei F., Iravani M., Lehn P. Small-signal dynamic model of a micro-grid including conventional and electronically in-terfaced distributed resources. IET Gener. Transm. Distrib. 2007;1:369–378. doi: 10.1049/iet-gtd:20045207. DOI
Han H., Hou X., Yang J., Wu J., Su M., Guerrero J.M. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid. 2016;7:200–215. doi: 10.1109/TSG.2015.2434849. DOI
Han Y., Young P.M., Jain A., Zimmerle D. Robust Control for Microgrid Frequency Deviation Reduction with Attached Storage System. IEEE Trans. Smart Grid. 2014;6:557–565. doi: 10.1109/TSG.2014.2320984. DOI
Mallesham G., Mishra S., Jha A. Ziegler-Nichols Based Controller Parameters Tuning for Load Frequency Control in a Microgrid; Proceedings of the 2011 International Conference on Energy, Automation, and Signal (ICEAS); Bhubaneswar, India. 28–30 December 2011; pp. 1–8.
Mallesham G., Mishra S., Jha A. Maiden Application of Ziegler-Nichols Method to AGC of Distributed Generation System; Proceedings of the Power Systems Conference and Exposition (PSCE’09); Seattle, WA, USA. 15–18 March 2009; pp. 1–7.
Scherlozer A., Orsini M., Patole S. Simulation and Numerical Analysis and Comparative Study of a PID Controller Based on Ziegler-Nichols and Auto Turning Method; Proceedings of the 12th IEEE International Conference on Control and Auto-mation; Kathmandu, Nepal. 1–3 June 2016.
Hassan M., Abido M. Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimi-zation. IEEE Trans. Power Electron. 2011;26:755–769. doi: 10.1109/TPEL.2010.2100101. DOI
de Godoy P.T., Poloni P., de Almeida A.B., Marujo D. Centralized Secondary Control Assessment of Microgrids with Battery and Diesel Generator; Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America); Gramado City, Brazil. 15–18 September 2019; pp. 1–6. DOI
Mishra S. Design-Oriented Analysis of Modern Active Droop-Controlled Power Supplies. IEEE Trans. Ind. Electron. 2009;56:3704–3708. doi: 10.1109/TIE.2009.2025289. DOI
Almousawi A.Q., Aldair A.A. Design an Accurate Power Control Strategy of Parallel Connected Inverters in Islanded Microgrids. IOP Conf. Series: Mater. Sci. Eng. 2021;1105:012021. doi: 10.1088/1757-899X/1105/1/012021. DOI
Ali Q., Ammar A. Control Strategy of Reactive Power Sharing in an Islanded Microgrids; Proceedings of the 3rd Scientific Conference of Electrical and Electronic Engineering Researches (SCEEER); Basrah, Iraq. 15–16 June 2020; DOI
Zhong Q.-C., Hornik T. Cascaded Current–Voltage Control to Improve the Power Quality for a Grid-Connected Inverter With a Local Load. IEEE Trans. Ind. Electron. 2012;60:1344–1355. doi: 10.1109/TIE.2012.2187415. DOI
Bolton W. Instrumentation and Control Systems. 3rd ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2021.
Gu W., Lou G., Tan W., Yuan X. A Nonlinear State Estimator-Based Decentralized Secondary Voltage Control Scheme for Autonomous Microgrids. IEEE Trans. Power Syst. 2017;32:4794–4804. doi: 10.1109/TPWRS.2017.2676181. DOI
Simpson-Porco J.W., Shafiee Q., Dorfler F., Vasquez J.C., Guerrero J.M., Bullo F. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 2015;62:7025–7038. doi: 10.1109/TIE.2015.2436879. DOI
Khurram H., Rizwan A., Muhammad H., Waseem A., Abubakar S. Reactive power sharing and voltage restoration in islanded AC microgrids. Turk. J. Electr. Eng. Comput. Sci. 2022;30:818–838.
Jumani T.A., Mustafa M.W., Rasid M., Mirjat N.H., Leghari Z.H., Saeed M.S. Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm. Energies. 2018;11:3191. doi: 10.3390/en11113191. DOI
Vemula N.K., Parida S.K. Enhancement of small signal stability in inverter-dominated microgrid with optimal internal model controller. Int. Trans. Electr. Energy Syst. 2020;30:e12471. doi: 10.1002/2050-7038.12471. DOI
Salim O.M., Aboraya A., Arafa S.I. Cascaded controller for a standalone microgrid-connected inverter based on triple-action controller and particle swarm optimisation. IET Gener. Transm. Distrib. 2020;14:3389–3399. doi: 10.1049/iet-gtd.2019.1641. DOI
Al-Saedi W., Lachowicz S.W., Habibi D., Bass O. Voltage and frequency regulation based DG unit in an autonomous mi-crogrid operation using Particle Swarm Optimization. Int. J. Electr. Power Energy Syst. 2013;53:742–751. doi: 10.1016/j.ijepes.2013.06.002. DOI
Vinayagam A., Abu Alqumsan A., Swarna K., Khoo S.Y., Stojcevski A. Intelligent control strategy in the islanded network of a solar PV microgrid. Electr. Power Syst. Res. 2018;155:93–103. doi: 10.1016/j.epsr.2017.10.006. DOI
Mohammadi F., Mohammadi-Ivatloo B., Gharehpetian G.B., Ali M.H., Wei W., Erdinc O., Shirkhani M. Robust Control Strategies for Microgrids: A Review. IEEE Syst. J. 2021;16:2401–2412. doi: 10.1109/JSYST.2021.3077213. DOI
Sarkar S.K., Badal F.R., Das S.K. A comparative study of high performance robust PID controller for grid voltage control of islanded microgrid. Int. J. Dyn. Control. 2017;6:1207–1217. doi: 10.1007/s40435-017-0364-0. DOI
Yang C., Yao W., Fang J., Ai X., Chen Z., Wen J., He H. Dynamic event-triggered robust secondary frequency control for islanded AC microgrid. Appl. Energy. 2019;242:821–836. doi: 10.1016/j.apenergy.2019.03.139. DOI
Hu J., Bhowmick P. A consensus-based robust secondary voltage and frequency control scheme for islanded microgrids. Int. J. Electr. Power Energy Syst. 2019;116:105575. doi: 10.1016/j.ijepes.2019.105575. DOI
Cai H., Hu G. Distributed robust hierarchical power sharing control of grid-connected spatially concentrated ACmicrogrid. IEEE Trans. Control Syst. Technol. 2019;27:1012–1022. doi: 10.1109/TCST.2017.2789182. DOI
Mohammadi F., Nazri G.-A., Saif M. An Improved Droop-Based Control Strategy for MT-HVDC Systems. Electronics. 2020;9:87. doi: 10.3390/electronics9010087. DOI
Aazami R., Heydari O., Tavoosi J., Shirkhani M., Mohammadzadeh A., Mosavi A. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability. 2022;14:6183. doi: 10.3390/su14106183. DOI
Salih T.K.M., Hussain Z., Ismail S.Y. Impact of High Voltage Direct Current Link on Transmission Line in Kurdistan Power System. J. Eng. 2022;28:46–59. doi: 10.31026/j.eng.2022.03.04. DOI
Sedhom B.E., Hatata A.Y., El-Saadawi M.M., Abd-Raboh E.H.E. Robust adaptive H-infinity based controllerfor islanded microgrid supplying non-linearand unbalanced loads. IET Smart Grid. 2019;2:420–435. doi: 10.1049/iet-stg.2019.0024. DOI
Ganguly A., Bhadra S., Bhowmick P., Sen S. Distributed secondary control of islanded AC microgrids considering topology switching and plug-and-play operation. IFAC-PapersOnLine. 2022;55:442–447. doi: 10.1016/j.ifacol.2022.04.073. DOI
Jasim A.M., Jasim B.H., Mohseni S., Brent A.C. Consensus-Based Dispatch Optimization of a Microgrid Considering Meta-Heuristic-Based Demand Response Scheduling and Network Packet Loss Characterization. Energy AI. 2022 doi: 10.1016/j.egyai.2022.100212. in press. DOI
Jasim A., Jasim B. Grid-Forming and Grid-Following Based Microgrid Inverters Control. Iraqi J. Electr. Electron. Eng. 2021;18:111–131. doi: 10.37917/ijeee.18.1.13. DOI
Alhasnawi B.N.N., Jasim B.H., Issa W., Esteban M.D. A Novel Cooperative Controller for Inverters of Smart Hybrid AC/DC Microgrids. Appl. Sci. 2020;10:6120. doi: 10.3390/app10176120. DOI
Alhasnawi B., Jasim B., Rahman Z.-A., Guerrero J., Esteban M. A Novel Internet of Energy Based Optimal Multi-Agent Control Scheme for Microgrid including Renewable Energy Resources. Int. J. Environ. Res. Public Health. 2021;18:8146. doi: 10.3390/ijerph18158146. PubMed DOI PMC
Tiwari M.K., Vidyarthi N. Solving machine loading problems in a flexible manufacturing system using a genetic algorithm based heuristic approach. Int. J. Prod. Res. 2000;38:3357–3384. doi: 10.1080/002075400418298. DOI
Michael N. Artificial Intelligence A Guide to Intelligent Systems. 2nd ed. Addison Wesley; Boston, MA, USA: 2005.
Mi Y., Guo J., Yu S., Cai P., Ji L., Wang Y., Yue D., Fu Y., Jin C. A Power Sharing Strategy for Islanded DC Microgrid with Unmatched Line Impedance and Local Load. Electr. Power Syst. Res. 2021;192:106983. doi: 10.1016/j.epsr.2020.106983. DOI
Li Y.W., Kao C.N. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. IEEE Trans. Power Electron. 2009;24:2977–2988.
Mikulecký P., Olševicová K., Bureš V., Mls K. Possibilities of Ambient Intelligence and Smart Environments in Educational Institutions. In: Chong N.Y., Matrogiovanni F., editors. Handbook of Research on Ambient Intelligence and Smart Environments: Trends and Perspectives. IGI Group; Hershey, PA, USA: 2011. pp. 620–639. DOI