The role of single fraction Gamma Knife radiosurgery for intraventricular central neurocytomas and the utility of F-18 fluroethyltyrosine: two case reports
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
Jeune Chercheur en Recherche Clinique
Université de Lausanne
PubMed
36437467
PubMed Central
PMC9703805
DOI
10.1186/s13256-022-03665-4
PII: 10.1186/s13256-022-03665-4
Knihovny.cz E-zdroje
- Klíčová slova
- Central neurocytoma, F-18 FET, Gamma Knife, Radiosurgery,
- MeSH
- dospělí MeSH
- lidé MeSH
- neurocytom * diagnostické zobrazování radioterapie MeSH
- progrese nemoci MeSH
- radiochirurgie * přístrojové vybavení MeSH
- reziduální nádor MeSH
- tyrosin aplikace a dávkování analogy a deriváty MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- (18F)fluoroethyltyrosine MeSH Prohlížeč
- tyrosin MeSH
BACKGROUND: Primary treatment of central neurocytomas is surgical resection. Gamma Knife surgery is considered a valuable therapeutic option in case of residual (after subtotal resection) or recurrent central neurocytomas. Here, we focused on the role of F-18 fluroethyltyrosine as a marker to document tumor progression after initial resection, in the context of an atypical central neurocytoma. We also describe MIB-1's role in evaluating therapeutic decision-making. CASE PRESENTATION: Two patients with central neurocytomas were treated by Gamma Knife surgery in our center. The first case (31-year-old Caucasian male) had atypical central neurocytoma. Four and a half years after surgical resection, magnetic resonance imaging and F-18 fluroethyltyrosine documented clear progression of residual central neurocytoma, further treated by Gamma Knife surgery (18 Gy at 50%, target volume 1.4 cc, and prescription isodose volume 1.8 cc). The initial post-Gamma Knife surgery clinical course was uneventful, with progressive volumetric reduction of residual tumor up to 4.5 years, when out-of-field recurrence was suspected and confirmed by local F-18 fluroethyltyrosine hyperactivity. Second single-fraction Gamma Knife surgery was performed (18 Gy at 50%, target volume 0.49 cc, prescription isodose volume 0.72 cc). The second (32-year-old Caucasian female) had previous subtotal resection and typical central neurocytoma. Seven years later, she had residual tumor progression. Single-fraction Gamma Knife surgery was performed (16 Gy at 50% isodose line, target volume 1.7 cc, and prescription isodose volume 2.5 cc). Last follow-up showed tumor volume reduction. Follow-up magnetic resonance imaging showed important volumetric reduction of both treated lesions. CONCLUSIONS: In atypical central neurocytomas, F-18 fluroethyltyrosine could be used as postoperative examination to detect small tumor remnants, follow-up evaluation following the Gamma Knife surgery or, in select cases, following surgical resection. The role of MIB-1 is important in therapeutic decision-making, as tumors with MIB-1 exceeding 2% are characterized by more aggressive clinical course. Single-fraction Gamma Knife surgery remains a valuable therapeutic option for postoperative residual atypical central neurocytomas and central neurocytoma recurrences.
1st Faculty of Medicine Charles University Prague Prague Czech Republic
Centre Hospitalier Universitaire Regional de Lille Lille France
Institute of Radiation Physics Lausanne Switzerland
Radiation Oncology Department Lausanne University Hospital Lausanne Switzerland
Service of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland
Zobrazit více v PubMed
Hassoun J, Gambarelli D, Grisoli F, Pellet W, Salamon G, Pellissier JF, et al. Central neurocytoma. An electron-microscopic study of two cases. Acta Neuropathol. 1982;56(2):151–156. doi: 10.1007/BF00690587. PubMed DOI
Hassoun J, Soylemezoglu F, Gambarelli D, Figarella-Branger D, von Ammon K, Kleihues P. Central neurocytoma: a synopsis of clinical and histological features. Brain Pathol. 1993;3(3):297–306. doi: 10.1111/j.1750-3639.1993.tb00756.x. PubMed DOI
Lee J, Chang SM, McDermott MW, Parsa AT. Intraventricular neurocytomas. Neurosurg Clin N Am. 2003;14(4):483–508. doi: 10.1016/S1042-3680(03)00064-0. PubMed DOI
Rades D, Fehlauer F, Schild SE. Treatment of atypical neurocytomas. Cancer. 2004;100(4):814–817. doi: 10.1002/cncr.20032. PubMed DOI
Rades D, Fehlauer F. Treatment options for central neurocytoma. Neurology. 2002;59(8):1268–1270. doi: 10.1212/WNL.59.8.1268. PubMed DOI
Leenstra JL, Rodriguez FJ, Frechette CM, Giannini C, Stafford SL, Pollock BE, et al. Central neurocytoma: management recommendations based on a 35-year experience. Int J Radiat Oncol Biol Phys. 2007;67(4):1145–1154. doi: 10.1016/j.ijrobp.2006.10.018. PubMed DOI
Monaco EA, 3rd, Niranjan A, Lunsford LD. The management of central neurocytoma: radiosurgery. Neurosurg Clin N Am. 2015;26(1):37–44. doi: 10.1016/j.nec.2014.09.008. PubMed DOI
Yamanaka K, Iwai Y, Shuto T, Kida Y, Sato M, Hayashi M, et al. Treatment results of Gamma Knife radiosurgery for central neurocytoma: report of a Japanese multi-institutional cooperative study. World Neurosurg. 2016;90:300–305. doi: 10.1016/j.wneu.2016.03.016. PubMed DOI
Nakamura A, Kano H, Niranjan A, Lunsford LD. Radiosurgery for central neurocytoma. Prog Neurol Surg. 2019;34:232–237. doi: 10.1159/000493069. PubMed DOI
Kim CY, Paek SH, Jeong SS, Chung HT, Han JH, Park CK, et al. Gamma knife radiosurgery for central neurocytoma: primary and secondary treatment. Cancer. 2007;110(10):2276–2284. doi: 10.1002/cncr.23036. PubMed DOI
Genc A, Bozkurt SU, Karabagli P, Seker A, Bayri Y, Konya D, et al. Gamma knife radiosurgery for cranial neurocytomas. J Neurooncol. 2011;105(3):647–657. doi: 10.1007/s11060-011-0635-0. PubMed DOI
Karlsson B, Guo WY, Kejia T, Dinesh N, Pan DH, Jokura H, et al. Gamma Knife surgery for central neurocytomas. J Neurosurg. 2012;117(Suppl):96–101. doi: 10.3171/2012.6.GKS12214. PubMed DOI
Bertalanffy A, Roessler K, Koperek O, Gelpi E, Prayer D, Knosp E. Recurrent central neurocytomas. Cancer. 2005;104(1):135–142. doi: 10.1002/cncr.21109. PubMed DOI
Takao H, Nakagawa K, Ohtomo K. Central neurocytoma with craniospinal dissemination. J Neurooncol. 2003;61(3):255–259. doi: 10.1023/A:1022553110232. PubMed DOI
Soylemezoglu F, Scheithauer BW, Esteve J, Kleihues P. Atypical central neurocytoma. J Neuropathol Exp Neurol. 1997;56(5):551–556. doi: 10.1097/00005072-199705000-00011. PubMed DOI
Brat DJ, Scheithauer BW, Eberhart CG, Burger PC. Extraventricular neurocytomas: pathologic features and clinical outcome. Am J Surg Pathol. 2001;25(10):1252–1260. doi: 10.1097/00000478-200110000-00005. PubMed DOI
Ogawa Y, Sugawara T, Seki H, Sakuma T. Central neurocytomas with MIB-1 labeling index over 10% showing rapid tumor growth and dissemination. J Neurooncol. 2006;79(2):211–216. doi: 10.1007/s11060-006-9129-x. PubMed DOI
Rades D, Schild SE, Fehlauer F. Prognostic value of the MIB-1 labeling index for central neurocytomas. Neurology. 2004;62(6):987–989. doi: 10.1212/01.WNL.0000115392.21898.E3. PubMed DOI
Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016;18(3):426–434. doi: 10.1093/neuonc/nov148. PubMed DOI PMC
Plotkin M, Blechschmidt C, Auf G, Nyuyki F, Geworski L, Denecke T, et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol. 2010;20(10):2496–2502. doi: 10.1007/s00330-010-1819-2. PubMed DOI
Mineura K, Sasajima T, Itoh Y, Sasajima H, Kowada M, Tomura N, et al. Blood flow and metabolism of central neurocytoma: a positron emission tomography study. Cancer. 1995;76(7):1224–1232. doi: 10.1002/1097-0142(19951001)76:7<1224::AID-CNCR2820760720>3.0.CO;2-R. PubMed DOI
Ohtani T, Takahashi A, Honda F, Ishiuchi S, Kurihara H, Inoue T, et al. Central neurocytoma with unusually intense FDG uptake: case report. Ann Nucl Med. 2001;15(2):161–165. doi: 10.1007/BF02988610. PubMed DOI
Sakamoto R, Okada T, Kanagaki M, Yamamoto A, Fushimi Y, Kakigi T, et al. Estimation of proliferative potentiality of central neurocytoma: correlational analysis of minimum ADC and maximum SUV with MIB-1 labeling index. Acta Radiol. 2015;56(1):114–120. doi: 10.1177/0284185114521187. PubMed DOI
Mackenzie IR. Central neurocytoma: histologic atypia, proliferation potential, and clinical outcome. Cancer. 1999;85(7):1606–1610. doi: 10.1002/(SICI)1097-0142(19990401)85:7<1606::AID-CNCR24>3.0.CO;2-B. PubMed DOI
Kaur G, Kane AJ, Sughrue ME, Oh M, Safaee M, Sun M, et al. MIB-1 labeling index predicts recurrence in intraventricular central neurocytomas. J Clin Neurosci. 2013;20(1):89–93. doi: 10.1016/j.jocn.2012.05.025. PubMed DOI PMC
Tuleasca C, Leroy HA, Regis J, Levivier M. Gamma Knife radiosurgery for cervical spine lesions: expanding the indications in the new era of Icon. Acta Neurochir. 2016;158(11):2235–2236. doi: 10.1007/s00701-016-2962-6. PubMed DOI
Schild SE, Scheithauer BW, Haddock MG, Schiff D, Burger PC, Wong WW, et al. Central neurocytomas. Cancer. 1997;79(4):790–795. doi: 10.1002/(SICI)1097-0142(19970215)79:4<790::AID-CNCR16>3.0.CO;2-V. PubMed DOI
Bertalanffy A, Roessler K, Dietrich W, Aichholzer M, Prayer D, Ertl A, et al. Gamma knife radiosurgery of recurrent central neurocytomas: a preliminary report. J Neurol Neurosurg Psychiatry. 2001;70(4):489–493. doi: 10.1136/jnnp.70.4.489. PubMed DOI PMC
Hung YC, Lee CC, Yang HC, Mohammed N, Kearns KN, Sun SB, et al. Stereotactic radiosurgery for central neurocytomas: an international multicenter retrospective cohort study. J Neurosurg. 2020 doi: 10.3171/2020.1.JNS191515. PubMed DOI
Pan DH, Lee CC. The management of incidental central neurocytoma. Neurosurg Clin N Am. 2015;26(1):57–66. doi: 10.1016/j.nec.2014.09.010. PubMed DOI