Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: Influence of shape and environmental factors on particokinetics/particle aerodynamics
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36442637
PubMed Central
PMC9691506
DOI
10.1016/j.scitotenv.2022.160503
PII: S0048-9697(22)07605-7
Knihovny.cz E-zdroje
- Klíčová slova
- Aerodynamics, Gold nanourchins, Nebulization, Particokinetics, SARS-CoV-2,
- MeSH
- COVID-19 * MeSH
- lidé MeSH
- náhrada slin MeSH
- nanočástice * MeSH
- respirační aerosoly a kapénky MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- náhrada slin MeSH
Severe acute respiratory syndrome coronavirus 2, abbreviated as SARS-CoV-2, has been associated with the transmission of infectious COVID-19 disease through breathing and speech droplets emitted by infected carriers including asymptomatic cases. As part of SARS-CoV-2 global pandemic preparedness, we studied the transmission of aerosolized air mimicking the infected person releasing speech aerosol with droplets containing CorNPs using a vibrating mesh nebulizer as human patient simulator. Generally speech produces nanoaerosols with droplets of <5 μm in diameter that can travel distances longer than 1 m after release. It is assumed that speech aerosol droplets are a main element of the current Corona virus pandemic, unlike droplets larger than 5 m, which settle down within a 1 m radius. There are no systemic studies, which take into account speech-generated aerosol/droplet experimental validation and their aerodynamics/particle kinetics analysis. In this study, we cover these topics and explore role of residual water in aerosol droplet stability by exploring drying dynamics. Furthermore, a candle experiment was designed to determine whether air pollution might influence respiratory virus like nanoparticle transmission and air stability.
Zobrazit více v PubMed
Abd E.W., Eassa S.M., Metwally M., Al-Hraishawi H., Omar S.R. SARS-CoV-2 transmission channels: a review of the literature. MEDICC Rev. 2020;22(4):51–69. PubMed
Ajay Vikram Singh D.G., Vats Tanushree, Singh Archana, Zamboni Paolo. High throughput array technologies: expanding applications from clinics to applied research. Front. Nanosci. Nanotechnol. 2019;5:1–2.
Ajay Vikram Singh A.K., Malik Ashish, Maharjan Romi Singh, Dietrich Paul, Thissen Andreas, Siewert Katherina, Curato Caterina, Pande Kajal, Prahlad Dwarakanath, Kulkarni Naveen, Laux Peter, Luch Andreas. Interfacial water in SARS spike protein: investigating the interaction with human ACE2 receptor and in vitro uptake in A549 cells. Langmuir. 2022;38(26):7976–7988. doi: 10.1021/acs.langmuir.2c00671. PubMed DOI
Ali N., Islam F. The effects of air pollution on COVID-19 infection and mortality—a review on recent evidence. Front. Public Health. 2020;8 PubMed PMC
Ayala-Orozco C., Liu J.G., Knight M.W., Wang Y., Day J.K., Nordlander P., Halas N.J. Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 2014;14(5):2926–2933. PubMed PMC
Bavel J.J.V., Baicker K., Boggio P.S., Capraro V., Cichocka A., Cikara M., Crockett M.J., Crum A.J., Douglas K.M., Druckman J.N., Drury J., Dube O., Ellemers N., Finkel E.J., Fowler J.H., Gelfand M., Han S., Haslam S.A., Jetten J., Kitayama S., Mobbs D., Napper L.E., Packer D.J., Pennycook G., Peters E., Petty R.E., Rand D.G., Reicher S.D., Schnall S., Shariff A., Skitka L.J., Smith S.S., Sunstein C.R., Tabri N., Tucker J.A., Linden S.v.d., Lange P.v., Weeden K.A., Wohl M.J.A., Zaki J., Zion S.R., Willer R. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 2020;4(5):460–471. PubMed
Bazant M.Z., Bush J.W.M. A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. 2021;118(17) PubMed PMC
Conticini E., Frediani B., Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020;261 PubMed PMC
Crump J.G., Seinfeld J.H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. J. Aerosol Sci. 1981;12(5):405–415.
Eiche T., Kuster M. Aerosol release by healthy people during speaking: possible contribution to the transmission of SARS-CoV-2. Int. J. Environ. Res. Public Health. 2020;17(23):9088. PubMed PMC
Heyder J., Gebhart J., Rudolf G., Schiller C.F., Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Sci. 1986;17(5):811–825.
Lea Hamner P.D., Capron Ian, Ross Andy, Jordan Amber, Lee Jaxon, Lynn Joanne, Ball Amelia, Narwal Simranjit, Russell Sam, Patrick Dale, Leibrand Howard. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice — Skagit County, Washington, March 2020. 69(19) CDC; 2020. pp. 606–610. PubMed
Leibrock L., Wagener S., Singh A.V., Laux P., Luch A. Nanoparticle induced barrier function assessment at liquid–liquid and air–liquid interface in novel human lung epithelia cell lines. Toxicol.Res. 2019;8(6):1016–1027. PubMed PMC
Liu S., Yang J., Jia H., Zhou H., Chen J., Guo T. Virus spike and membrane-lytic mimicking nanoparticles for high cell binding and superior endosomal escape. ACS Appl. Mater. Interfaces. 2018;10(28):23630–23637. PubMed
Maharjan R.S., Singh A.V., Hanif J., Rosenkranz D., Haidar R., Shelar A., Singh S.P., Dey A., Patil R., Zamboni P., Laux P., Luch A. Investigation of the associations between a nanomaterial's microrheology and toxicology. ACS Omega. 2022;7(16):13985–13997. PubMed PMC
Malik A., Prahlad D., Kulkarni N., Kayal A. bioRxiv; 2020. Interfacial Water Molecules Make RBD of SPIKE Protein and Human ACE2 to Stick Together. 2020.2006.2015.152892.
Netz R.R. Mechanisms of airborne infection via evaporating and sedimenting droplets produced by speaking. J. Phys. Chem. B. 2020;124(33):7093–7101. PubMed PMC
Netz R.R., Eaton W.A. Physics of virus transmission by speaking droplets. Proc. Natl. Acad. Sci. 2020;117(41):25209–25211. PubMed PMC
Pan M., Lednicky J.A., Wu C.-Y. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 2019;127(6):1596–1611. PubMed PMC
Sigloch H., Bierkandt F.S., Singh A.V., Gadicherla A.K., Laux P., Luch A. 3D printing - evaluating particle emissions of a 3D printing pen. JoVE. 2020;164 PubMed
Singh A.V., Maharjan R.-S., Kanase A., Siewert K., Rosenkranz D., Singh R., Laux P., Luch A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces. 2021;13(1):1943–1955. PubMed
Singh A.V., Maharjan R.S., Jungnickel H., Romanowski H., Hachenberger Y.U., Reichardt P., Bierkandt F., Siewert K., Gadicherla A., Laux P., Luch A. Evaluating particle emissions and toxicity of 3D pen printed filaments with metal nanoparticles as additives: in vitro and in silico discriminant function analysis. ACS Sustain. Chem. Eng. 2021;9(35):11724–11737.
Singh A.V., Maharjan R.S., Kromer C., Laux P., Luch A., Vats T., Chandrasekar V., Dakua S.P., Park B.-W. Advances in smoking related in vitro inhalation toxicology: a perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol. 2021;34(9):1984–2002. PubMed
Singh A.V., Romeo A., Scott K., Wagener S., Leibrock L., Laux P., Luch A., Kerkar P., Balakrishnan S., Dakua S.P., Park B.-W. Emerging technologies for in vitro inhalation toxicology (Adv. Healthcare Mater. 18/2021) Adv. Healthc. Mater. 2021;10 PubMed PMC
Singh A.V., Chandrasekar V., Laux P., Luch A., Dakua S.P., Zamboni P., Shelar A., Yang Y., Pandit V., Tisato V., Gemmati D. Micropatterned neurovascular interface to mimic the blood–brain barrier's neurophysiology and micromechanical function: a BBB-on-CHIP model. Cells. 2022;11(18):2801. PubMed PMC
Smither S.J., Eastaugh L.S., Findlay J.S., Lever M.S. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg.Microbes Infect. 2020:1–9. PubMed PMC
Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020;382(16):1564–1567. PubMed PMC
Walker D., Käsdorf B.T., Jeong H.-H., Lieleg O., Fischer P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 2015;1(11) PubMed PMC
Walton W.H. Feret's statistical diameter as a measure of particle size. Nature. 1948;162(4113):329–330.
Wang C.C., Prather K.A., Sznitman J., Jimenez J.L., Lakdawala S.S., Tufekci Z., Marr L.C. Airborne transmission of respiratory viruses. Science. 2021;373(6558) PubMed PMC
Wang Y., Liu Z., Liu H., Wu M., He J., Cao G. Droplet aerosols transportation and deposition for three respiratory behaviors in a typical negative pressure isolation ward. Build. Environ. 2022;219 PubMed PMC
Wüstner D., Solanko L.M., Lund F.W., Sage D., Schroll H.J., Lomholt M.A. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation. BMC Bioinformatics. 2012;13(1):296. PubMed PMC
Xu R., Cui B., Duan X., Zhang P., Zhou X., Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral Sci. 2020;12(1):11. PubMed PMC
Yao X., Lau N.T., Fang M., Chan C.K. Correlations of ambient temperature and relative humidity with submicron particle number concentration size distributions in on-road vehicle plumes. Aerosol Sci. Technol. 2007;41(7):692–700.