• This record comes from PubMed

Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer's Disease

. 2022 Dec 07 ; 13 (23) : 3314-3329. [epub] 20221129

Language English Country United States Media print-electronic

Document type Journal Article

Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-β (Aβ) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aβ clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aβ and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aβ42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 μM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aβ42 expressing flies and generating a better outcome than doxycycline (50 μM). Moreover, 22 proved to be able to decrease Aβ42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aβ/Tau aggregation inhibition in AD.

See more in PubMed

Alzheimer’s Disease International. https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/. (7 December 2021).

Abyadeh M.; Gupta V.; Gupta V.; Chitranshi N.; Wu Y.; Amirkhani A.; Meyfour A.; Sheriff S.; Shen T.; Dhiman K.; et al. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer’s Disease. Aging Dis. 2021, 12, 1964–1976. 10.14336/AD.2021.0719. PubMed DOI PMC

Karran E.; De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat. Rev. Drug Discovery 2022, 21, 306–318. 10.1038/s41573-022-00391-w. PubMed DOI

Cummings J.; Lee G.; Ritter A.; Sabbagh M.; Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement. 2020, 6, e1205010.1002/trc2.12050. PubMed DOI PMC

Busche M. A.; Hyman B. T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193. 10.1038/s41593-020-0687-6. PubMed DOI PMC

Pickett E. K.; Herrmann A. G.; McQueen J.; Abt K.; Dando O.; Tulloch J.; Jain P.; Dunnett S.; Sohrabi S.; Fjeldstad M. P.; Calkin W.; Murison L.; Jackson R. J.; Tzioras M.; Stevenson A.; d’Orange M.; Hooley M.; Davies C.; Colom-Cadena M.; Anton-Fernandez A.; King D.; Oren I.; Rose J.; McKenzie C. A.; Allison E.; Smith C.; Hardt O.; Henstridge C. M.; Hardingham G. E.; Spires-Jones T. L. Amyloid Beta and Tau Cooperate to Cause Reversible Behavioral and Transcriptional Deficits in a Model of Alzheimer’s Disease. Cell Rep. 2019, 29, 3592–3604. 10.1016/j.celrep.2019.11.044. PubMed DOI PMC

Busche M. A.; Wegmann S.; Dujardin S.; Commins C.; Schiantarelli J.; Klickstein N.; Kamath T. V.; Carlson G. A.; Nelken I.; Hyman B. T. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 2019, 22, 57–64. 10.1038/s41593-018-0289-8. PubMed DOI PMC

Cavalli A.; Bolognesi M. L.; Minarini A.; Rosini M.; Tumiatti V.; Recanatini M.; Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008, 51, 347–372. 10.1021/jm7009364. PubMed DOI

Malafaia D.; Albuquerque H.M.T.; Silva A.M.S. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur. J. Med. Chem. 2021, 214, 11320910.1016/j.ejmech.2021.113209. PubMed DOI

Kranjc A.; Bongarzone S.; Rossetti G.; Biarnés X.; Cavalli A.; Bolognesi M. L.; Roberti M.; Legname G.; Carloni P. Docking Ligands on Protein Surfaces: The Case Study of Prion Protein. J. Chem. Theory Comput. 2009, 5, 2565–2573. 10.1021/ct900257t. PubMed DOI

Staderini M.; Legname G.; Bolognesi M. L.; Menéndez J. C. Modulation of prion by small molecules: from monovalent to bivalent and multivalent ligands. Curr. Top Med. Chem. 2013, 13, 2491–2503. 10.2174/15680266113136660176. PubMed DOI

Kolstoe S. E.; Mangione P. P.; Bellotti V.; Taylor G. W.; Tennent G. A.; Deroo S.; Morrison A. J.; Cobb A. J.; Coyne A.; McCammon M. G.; Warner T. D.; Mitchell J.; Gill R.; Smith M. D.; Ley S. V.; Robinson C. V.; Wood S. P.; Pepys M. B. Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20483–20488. 10.1073/pnas.1008255107. PubMed DOI PMC

Dao P.; Ye F.; Liu Y.; Du Z. Y.; Zhang K.; Dong C. Z.; Meunier B.; Chen H. Development of Phenothiazine-Based Theranostic Compounds That Act Both as Inhibitors of β-Amyloid Aggregation and as Imaging Probes for Amyloid Plaques in Alzheimer’s Disease. ACS Chem. Neurosci. 2017, 8, 798–806. 10.1021/acschemneuro.6b00380. PubMed DOI

Gandini A.; Bartolini M.; Tedesco D.; Martinez-Gonzalez L.; Roca C.; Campillo N. E.; Zaldivar-Diez J.; Perez C.; Zuccheri G.; Miti A.; Feoli A.; Castellano S.; Petralla S.; Monti B.; Rossi M.; Moda F.; Legname G.; Martinez A.; Bolognesi M. L. Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3beta and Tau-Aggregation Inhibitors. J. Med. Chem. 2018, 61, 7640–7656. 10.1021/acs.jmedchem.8b00610. PubMed DOI

Liu H.; Zhong H.; Liu H.; Yao X. Molecular dynamics simulations reveal the disruption mechanism of a 2,4-thiazolidinedione derivative C30 against tau hexapeptide (PHF6) oligomer. Proteins 2022, 90, 142–154. 10.1002/prot.26196. PubMed DOI

Panek D.; Wichur T.; Godyń J.; Pasieka A.; Malawska B. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med. Chem. 2017, 9, 1835–1854. 10.4155/fmc-2017-0094. PubMed DOI

Reinke A. A.; Gestwicki J. E. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem. Biol. Drug Des. 2007, 70, 206–215. 10.1111/j.1747-0285.2007.00557.x. PubMed DOI

Cisek K.; Cooper G. L.; Huseby C. J.; Kuret J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res. 2014, 11, 918–927. 10.2174/1567205011666141107150331. PubMed DOI PMC

Bolognesi M. L.; Bartolini M.; Mancini F.; Chiriano G.; Ceccarini L.; Rosini M.; Milelli A.; Tumiatti V.; Andrisano V.; Melchiorre C. Bis(7)-tacrine derivatives as multitarget-directed ligands: Focus on anticholinesterase and antiamyloid activities. ChemMedChem 2010, 5, 1215–1220. 10.1002/cmdc.201000086. PubMed DOI

Zhang X.; Wang Y.; Wang S.-n.; Chen Q.-h.; Tu Y.-l.; Yang X.-h.; Chen J.-k.; Yan J.-w.; Pi R.-b.; Wang Y. Discovery of a novel multifunctional carbazole–aminoquinoline dimer for Alzheimer’s disease: copper selective chelation, anti-amyloid aggregation, and neuroprotection. Med. Chem. Res. 2018, 27, 777–784. 10.1007/s00044-017-2101-9. DOI

Petrlova J.; Kálai T.; Maezawa I.; Altman R.; Harishchandra G.; Hong H.-S.; Bricarello D. A.; Parikh A. N.; Lorigan G. A.; Jin L.-W.; et al. The influence of spin-labeled fluorene compounds on the assembly and toxicity of the Aβ peptide. PLoS One 2012, 7, e3544310.1371/journal.pone.0035443. PubMed DOI PMC

Nesterov E. E.; Skoch J.; Hyman B. T.; Klunk W. E.; Bacskai B. J.; Swager T. M. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew. Chem., Int. Ed. 2005, 44, 5452–5456. 10.1002/anie.200500845. PubMed DOI

Åslund A.; Sigurdson C. J.; Klingstedt T.; Grathwohl S.; Bolmont T.; Dickstein D. L.; Glimsdal E.; Prokop S.; Lindgren M.; Konradsson P.; Holtzman D. M.; Hof P. R.; Heppner F. L.; Gandy S.; Jucker M.; Aguzzi A.; Hammarström P.; Nilsson K. P. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol. 2009, 4, 673–684. 10.1021/cb900112v. PubMed DOI PMC

Cui M. C.; Li Z. J.; Tang R. K.; Liu B. L. Synthesis and evaluation of novel benzothiazole derivatives based on the bithiophene structure as potential radiotracers for beta-amyloid plaques in Alzheimer’s disease. Bioorg. Med. Chem. 2010, 18, 2777–2784. 10.1016/j.bmc.2010.02.002. PubMed DOI

Peng K.-Y.; Chen S.-A.; Fann W.-S. Efficient Light Harvesting by Sequential Energy Transfer across Aggregates in Polymers of Finite Conjugational Segments with Short Aliphatic Linkages. J. Am. Chem. Soc. 2001, 123, 11388–11397. 10.1021/ja011493q. PubMed DOI

Angyal S. J.; Rassack R. C. The Sommelet Reaction. Nature 1948, 161, 723.10.1038/161723b0. DOI

Folmer-Andersen J. F.; Buhler E.; Candau S.-J.; Joulie S.; Schmutz M.; Lehn J.-M. Cooperative, bottom-up generation of rigid-rod nanostructures through dynamic polymer chemistry. Polym. Int. 2010, 59, 1477–1491. 10.1002/pi.2864. DOI

Pouplana S.; Espargaro A.; Galdeano C.; Viayna E.; Sola I.; Ventura S.; Muñoz-Torrero D.; Sabate R. Thioflavin-S staining of bacterial inclusion bodies for the fast, simple, and inexpensive screening of amyloid aggregation inhibitors. Curr. Med. Chem. 2014, 21, 1152–1159. 10.2174/09298673113206660256. PubMed DOI

Espargaró A.; Medina A.; Di Pietro O.; Muñoz-Torrero D.; Sabate R. Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Sci. Rep. 2016, 6, 23349.10.1038/srep23349. PubMed DOI PMC

Viayna E.; Sabate R.; Muñoz-Torrero D. Dual inhibitors of β-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr. Top Med. Chem. 2013, 13, 1820–1842. 10.2174/15680266113139990139. PubMed DOI

Pérez-Areales F. J.; Di Pietro O.; Espargaró A.; Vallverdú-Queralt A.; Galdeano C.; Ragusa I. M.; Viayna E.; Guillou C.; Clos M. V.; Pérez B.; Sabaté R.; Lamuela-Raventós R. M.; Luque F. J.; Muñoz-Torrero D. Shogaol-huprine hybrids: dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties. Bioorg Med Chem 2014, 22, 5298–5307. 10.1016/j.bmc.2014.07.053. PubMed DOI

Di Pietro O.; Pérez-Areales F. J.; Juárez-Jiménez J.; Espargaró A.; Clos M. V.; Pérez B.; Lavilla R.; Sabaté R.; Luque F. J.; Muñoz-Torrero D. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies. Eur. J. Med. Chem. 2014, 84, 107–117. 10.1016/j.ejmech.2014.07.021. PubMed DOI

Viayna E.; Sola I.; Bartolini M.; De Simone A.; Tapia-Rojas C.; Serrano F. G.; Sabaté R.; Juárez-Jiménez J.; Pérez B.; Luque F. J.; Andrisano V.; Clos M. V.; Inestrosa N. C.; Muñoz-Torrero D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem. 2014, 57, 2549–2567. 10.1021/jm401824w. PubMed DOI

Sola I.; Aso E.; Frattini D.; López-González I.; Espargaró A.; Sabaté R.; Di Pietro O.; Luque F. J.; Clos M. V.; Ferrer I.; Muñoz-Torrero D. Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. J. Med. Chem. 2015, 58, 6018–6032. 10.1021/acs.jmedchem.5b00624. PubMed DOI

Caballero A. B.; Espargaró A.; Pont C.; Busquets M. A.; Estelrich J.; Muñoz-Torrero D.; Gamez P.; Sabate R. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Curr. Protein Pept. Sci. 2019, 20, 563–576. 10.2174/1389203720666190329120007. PubMed DOI

Wichur T.; Więckowska A.; Więckowski K.; Godyń J.; Jończyk J.; Valdivieso Á.; Panek D.; Pasieka A.; Sabaté R.; Knez D.; Gobec S.; Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem. 2020, 187, 11191610.1016/j.ejmech.2019.111916. PubMed DOI

Bortolami M.; Pandolfi F.; Tudino V.; Messore A.; Madia V. N.; De Vita D.; Di Santo R.; Costi R.; Romeo I.; Alcaro S.; Colone M.; Stringaro A.; Espargaró A.; Sabatè R.; Scipione L. New Pyrimidine and Pyridine Derivatives as Multitarget Cholinesterase Inhibitors: Design, Synthesis, and In Vitro and In Cellulo Evaluation. ACS Chem. Neurosci. 2021, 12, 4090–4112. 10.1021/acschemneuro.1c00485. PubMed DOI PMC

Pasieka A.; Panek D.; Szałaj N.; Espargaró A.; Więckowska A.; Malawska B.; Sabaté R.; Bajda M. Dual Inhibitors of Amyloid-β and Tau Aggregation with Amyloid-β Disaggregating Properties: Extended. ACS Chem. Neurosci. 2021, 12, 2057–2068. 10.1021/acschemneuro.1c00235. PubMed DOI PMC

Galdeano C.; Viayna E.; Sola I.; Formosa X.; Camps P.; Badia A.; Clos M. V.; Relat J.; Ratia M.; Bartolini M.; Mancini F.; Andrisano V.; Salmona M.; Minguillón C.; González-Muñoz G. C.; Rodríguez-Franco M. I.; Bidon-Chanal A.; Luque F. J.; Muñoz-Torrero D. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J. Med. Chem. 2012, 55, 661–669. 10.1021/jm200840c. PubMed DOI

Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum 2002, 1, 41–55. 10.1080/147342202753203087. PubMed DOI

Di L.; Kerns E. H.; Fan K.; McConnell O. J.; Carter G. T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223–232. 10.1016/S0223-5234(03)00012-6. PubMed DOI

Bartolini M.; Naldi M.; Fiori J.; Valle F.; Biscarini F.; Nicolau D. V.; Andrisano V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal. Biochem. 2011, 414, 215–225. 10.1016/j.ab.2011.03.020. PubMed DOI

Bartolini M.; Bertucci C.; Cavrini V.; Andrisano V. Beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem. Pharmacol. 2003, 65, 407–416. 10.1016/S0006-2952(02)01514-9. PubMed DOI

Stöhr J.; Wu H.; Nick M.; Wu Y.; Bhate M.; Condello C.; Johnson N.; Rodgers J.; Lemmin T.; Acharya S.; Becker J.; Robinson K.; Kelly M.J.S.; Gai F.; Stubbs G.; Prusiner S. B.; DeGrado W. F. A 31-residue peptide induces aggregation of tau’s microtubule-binding region in cells. Nat. Chem. 2017, 9, 874–881. 10.1038/nchem.2754. PubMed DOI PMC

Medina L.; González-Lizárraga F.; Dominguez-Meijide A.; Ploper D.; Parrales V.; Sequeira S.; Cima-Omori M. S.; Zweckstetter M.; Del Bel E.; Michel P. P.; Outeiro T. F.; Raisman-Vozari R.; Chehín R.; Socias S. B. Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Front. Aging Neurosci. 2021, 13, 63576010.3389/fnagi.2021.635760. PubMed DOI PMC

Muqit M. M. K.; Feany M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach?. Nat. Rev. Neurosci. 2002, 3, 237–243. 10.1038/nrn751. PubMed DOI

Lu B.; Vogel H. Drosophila models of neurodegenerative diseases. Annu. Rev. Pathol. 2009, 4, 315–342. 10.1146/annurev.pathol.3.121806.151529. PubMed DOI PMC

Moloney A.; Sattelle D. B.; Lomas D. A.; Crowther D. C. Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem. Sci. 2010, 35, 228–235. 10.1016/j.tibs.2009.11.004. PubMed DOI PMC

Newman T.; Sinadinos C.; Johnston A.; Sealey M.; Mudher A. Using Drosophila models of neurodegenerative diseases for drug discovery. Expert Opin. Drug Discovery 2011, 6, 129–140. 10.1517/17460441.2011.549124. PubMed DOI

Pratim Bose P.; Chatterjee U.; Nerelius C.; Govender T.; Norström T.; Gogoll A.; Sandegren A.; Göthelid E.; Johansson J.; Arvidsson P. I. Poly-N-methylated amyloid beta-peptide (Abeta) C-terminal fragments reduce Abeta toxicity in vitro and in Drosophila melanogaster. J. Med. Chem. 2009, 52, 8002–8009. 10.1021/jm901092h. PubMed DOI

Scherzer-Attali R.; Pellarin R.; Convertino M.; Frydman-Marom A.; Egoz-Matia N.; Peled S.; Levy-Sakin M.; Shalev D. E.; Caflisch A.; Gazit E.; Segal D. Complete phenotypic recovery of an Alzheimer’s disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One 2010, 5, e1110110.1371/journal.pone.0011101. PubMed DOI PMC

Caesar I.; Jonson M.; Nilsson K. P.; Thor S.; Hammarström P. Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic Drosophila. PLoS One 2012, 7, e3142410.1371/journal.pone.0031424. PubMed DOI PMC

McKoy A. F.; Chen J.; Schupbach T.; Hecht M. H. A novel inhibitor of amyloid β (Aβ) peptide aggregation: from high throughput screening to efficacy in an animal model of Alzheimer disease. J. Biol. Chem. 2012, 287, 38992–39000. 10.1074/jbc.M112.348037. PubMed DOI PMC

Frenkel-Pinter M.; Tal S.; Scherzer-Attali R.; Abu-Hussien M.; Alyagor I.; Eisenbaum T.; Gazit E.; Segal D. Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity. J. Alzheimers Dis. 2016, 51, 165–178. 10.3233/JAD-150927. PubMed DOI

Frenkel-Pinter M.; Tal S.; Scherzer-Attali R.; Abu-Hussien M.; Alyagor I.; Eisenbaum T.; Gazit E.; Segal D. Cl-NQTrp Alleviates Tauopathy Symptoms in a Model Organism through the Inhibition of Tau Aggregation-Engendered Toxicity. Neurodegener. Dis. 2017, 17, 73–82. 10.1159/000448518. PubMed DOI

Crowther D. C.; Kinghorn K. J.; Miranda E.; Page R.; Curry J. A.; Duthie F. A.; Gubb D. C.; Lomas D. A. Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience 2005, 132, 123–135. 10.1016/j.neuroscience.2004.12.025. PubMed DOI

Jahn T. R.; Kohlhoff K. J.; Scott M.; Tartaglia G. G.; Lomas D. A.; Dobson C. M.; Vendruscolo M.; Crowther D. C. Detection of early locomotor abnormalities in a Drosophila model of Alzheimer’s disease. J. Neurosci. Methods 2011, 197, 186–189. 10.1016/j.jneumeth.2011.01.026. PubMed DOI PMC

Jonson M.; Nyström S.; Sandberg A.; Carlback M.; Michno W.; Hanrieder J.; Starkenberg A.; Nilsson K.P.R.; Thor S.; Hammarström P. Aggregated Aβ1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila.. Cell Chem. Biol. 2018, 25, 595–610. 10.1016/j.chembiol.2018.03.006. PubMed DOI

Albertini C.; Naldi M.; Petralla S.; Strocchi S.; Grifoni D.; Monti B.; Bartolini M.; Bolognesi M. From Combinations to Single-Molecule Polypharmacology-Cromolyn-Ibuprofen Conjugates for Alzheimer’s Disease. Molecules 2021, 26, 1112.10.3390/molecules26041112. PubMed DOI PMC

Feng B. Y.; Toyama B. H.; Wille H.; Colby D. W.; Collins S. R.; May B. C.; Prusiner S. B.; Weissman J.; Shoichet B. K. Small-Molecule Aggregates Inhibit Amyloid Polymerization. Nat. Chem. Biol. 2008, 4, 197–199. 10.1038/nchembio.65. PubMed DOI PMC

Lendel C.; Bertoncini C. W.; Cremades N.; Waudby C. A.; Vendruscolo M.; Dobson C. M.; Schenk D.; Christodoulou J.; Toth G. On The Mechanism of Nonspecific Inhibitors of Protein Aggregation: Dissecting the Interactions of Alpha-Synuclein with Congo Red and Lacmoid. Biochemistry 2009, 48, 8322–8334. 10.1021/bi901285x. PubMed DOI

Maccari R.; Ottanà R.; Curinga C.; Vigorita M. G.; Rakowitz D.; Steindl T.; Langer T. Structure–Activity Relationships and Molecular Modelling of 5-arylidene-2,4-thiazolidinediones Active as Aldose Reductase Inhibitors. Bioorg Med Chem 2005, 13, 2809–2823. 10.1016/j.bmc.2005.02.026. PubMed DOI

Brand A. H.; Perrimon N. Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Development 1993, 118, 401–415. 10.1242/dev.118.2.401. PubMed DOI

Costa R.; Speretta E.; Crowther D. C.; Cardoso I. Testing the Therapeutic Potential of Doxycycline in a Drosophila Melanogaster Model of Alzheimer Disease. J. Biol. Chem. 2011, 286, 41647–41655. 10.1074/jbc.M111.274548. PubMed DOI PMC

Wu J. S.; Luo L. A Protocol for Dissecting Drosophila Melanogaster Brains for Live Imaging or Immunostaining. Nat. Protoc. 2006, 1, 2110–2115. 10.1038/nprot.2006.336. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...