• This record comes from PubMed

Confocal laser scanning microscopy (CLSM) as a new tool for morphological characterisation of both newly collected and museum voucher specimens of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda)

. 2022 Nov 10 ; 69 () : . [epub] 20221110

Language English Country Czech Republic Media electronic

Document type Journal Article

Taxonomic issues within Trypanorhyncha, e.g., the inaccurate light microscopic visualisation of the hook patterns, are solvable by confocal laser scanning microscopy (CLSM). We applied CLSM imaging to study Trygonicola macropora (Shipley et Hornell, 1906) and Dollfusiella michiae (Southwell, 1929) from Neotrygon caeruliopunctata Last, White et Séret from Bali, Indonesia. To illustrate the strength and limitations of CLSM, images of Otobothrium cysticum (Mayer, 1842) and Symbothriorhynchus tigaminacantha Palm, 2004, both permanent mounts from a collection, were also processed. The CLSM created image stacks of many layers, and edited with IMARIS Software, these layers resulted in three-dimensional images of the armature patterns and internal organs of both species. BABB (benzylalcohol and benzylbenzuolate) clearing was applied to T. macropora. We conclude that trypanorhynch cestodes stained with Mayer-Schuberg's acetic carmine permanently mounted in Canada balsam are suitable for CLSM, allowing detailed analyses of museum type-material as well as freshly collected and processed worms. BABB resulted in imaging the testes in detail, suggesting other stains to be used for CLSM in trypanorhynch cestode research. Application of CLSM for studies of other cestode groups is highly recommended.

See more in PubMed

Becker K., Jahrling N., Saghafi S., Weiler R., Dodt H.U. 2012: Chemical clearing and dehydration of GFP expressing mouse brains. PLoS ONE 7: e33916. PubMed DOI

Berke I.M., Miola J.P., David M.A., Smith M.K., Price C. 2016: Seeing through musculoskeletal tissues: improving in situ imaging of bone and the lacunar canalicular system through optical clearing. PLoS ONE 11: e0150268. PubMed DOI

Beveridge I. 1990: Taxonomic revision of Australian Eutetrarhynchidae Guiart (Cestoda: Trypanorhyncha). Invertebr. Tax. 4: 785-845. DOI

Beveridge I., Campbell R.A. 1998: Re-examination of the trypanorhynch cestode collections of A.E. Shipley, J. Hornell and T. Southwell, with the erection of a new genus, Trygonicola, and redescriptions of seven species. Syst. Parasitol. 39: 28-34. DOI

Bray R.A., Palm H.W., Theisen S. 2019: Bucephalus damriyasai n. sp. (Digenea: Bucephalidae) from the blacktip trevally Caranx heberi (Bennett) (Perciformes: Carangidae) off Bali, Indonesia. Syst. Parasitol. 96: 65-78. PubMed DOI

Chervy L. 2009: Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002-2008. Folia Parasitol. 56: 199-230. DOI

Cribb T.H., Bray R.A. 2010: Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Syst. Parasitol.76: 1-7 PubMed DOI

Degger N., Avenant-Oldewage A., Greenfield R. 2009: Innovative fluorescence detection technique for metalsin cestode egg-shells. Afr. Zool. 44: 204-207. DOI

Diaz N., Valencia J. 1985: Larval morphology and phenetic relationships of the Chilean Alsodes, Telmatobius, Caudiverbera and Insuetophrynus (Anura: Leptodactylidae). Copeia 1: 175-181. DOI

Fischthal J.H. 1978a: Allometric growth in three species of digenetic trematodes of marine fishes from Belize. J. Helminth. 52: 29-39. DOI

Fischthal J.H. 1978b: Allometric growth in four species of digenetic trematodes of marine fishes from Belize. Zool. Scri. 7: 13-18. DOI

Forge T.A., Macguidwin A.E. 1989: Nematode autofluorescence and its use as an indicator of viability. J. Nematol. 21: 399-403. PubMed

Halton D.W., Shaw C., Maule A.G., Smart D. 1994: Regulatory peptides in helminth parasites. Adv. Parasitol. 34: 163-227. PubMed DOI

Hrčková G., Halton D.W., Maule A.G., Brennan G.P., Shaw C., Johnston C.F. 1993: Neuropeptide F-immunoreactivity in the tetrathyridium of Mesocestoides corti (Cestoda: Cyclophyllidea). Parasitol. Res. 79: 690-695. DOI

Klimpel S., Kuhn T., Münster J. 2019: Parasites of Marine Fish and Cephalopods: A Practical Guide. Springer, International Publishing, New York, 180 pp. DOI

Liu Y, Wang Z.,Huang W., Pang S., Qian L., Zhang Y., Meng J., Xu M., Wang W., Wang Y., Lu B., Zhao Y., Xian J., Bo X., Yue B. 2021: De novo sequencing and high-contiguity genome assembly of Moniezia expansa reveals its specific fatty acid metabolism and reproductive stem cell regulatory network. Front. Cell Infect. Microbiol. 6: 693914. DOI

Morales-Ávila J.R., Gómez-Gutiérrez J., Hernandez-Saavedra N.Y., Robinson C.J., Palm H.W. 2019: Phylogenetic placement and microthrix pattern of Paranybelinia otobothrioides Dollfus, 1966 (Trypanorhyncha) from krill Nyctiphanes simplex Hansen, 1911. Int. J. Parasitol. Parasites Wildl. 10: 138-148. DOI

Mulisch M., Welsch U., Aescht E. (Eds.) 2015: Romeis Mikroskopische Technik. Springer Spektrum, Berlin, Heidelberg, 603 pp. DOI

Neves R.H., Biolchini C.L., Machado-Silva J.R., Carvalho J.J., Branquinho T.B., Lenzi H.L., Hulstijn M., Gomes D.C. 2005: A new description of the reproductive system of Schistosoma mansoni (Trematoda: Schistosomatidae) analyzed by confocal laser scanning microscopy. Parasitol. Res. 95: 43-49. DOI

Neves R.H., Costa-Silva M., Martinez E.M., Biolchini C.d.L., Lenzi H.L., Gomes D.C., Machado-Silva J.R. 2003: Reproductive system abnormalities in Schistosoma mansoni adult worms isolated from Nectomys squamipes (Muridae: Sigmodontinae): brightfield and confocal laser scanning microscopy analysis. Mem. Inst. Oswaldo Cruz 98: 361-365. PubMed DOI

Neves R.H., Costa-Silva M., Martinez E.M., Branquinho T.B., Oliveira R.M.F., Biolchini C.L., Lenzi H.L., Gomes D.C., Machado-Silva J.R. 2004. Phenotypic plasticity in adult worms of Schistosoma mansoni (Trematoda: Schistosomatidae) evidenced by brightfield and confocal laser scanning microscopies. Mem. Inst. Oswaldo Cruz 99: 131-136. PubMed DOI

Palm H.W. 1995: Untersuchungen zur Systematik von Ruesselbandwuermen (Cestoda: Trypanorhyncha) aus Antlantischen Fischen. Berichte aus dem Institut für Meereskunde an der Christian Albrechts Universitaet, Kiel 275: 1-238.

Palm H.W. 1997: An alternative classification of trypanorhynch cestodes considering the tentacular armature as being of limited importance. Syst. Parasitol. 37: 81-92. DOI

Palm H.W. 2004: The Trypanorhyncha Diesing, 1863. PKSPL-IPB, Bogor, 710 pp.

Palm H.W. 2008: Surface ultrastructure of the Elasmobranchia parasitizing Grillotiella exilis and Pseudonybelinia odontacantha (Trypanorhyncha, Cestoda). Zoomorphology 127: 249-258. DOI

Palm H.W., Bray R.A. 2014: Marine Fish Parasitology in Hawaii. Westarp & Partner Digitaldruck, Hohenwarsleben, 302 pp.

Palm H.W., Theisen S., Damriyasa I.M., Kusmintarsih E.S., Oka I.B., Setyowati E.A., Suratma N.A., Wibowo S., Kleinertz S. 2017: Anisakis (Nematoda: Ascaridoidea) from Indonesia. Dis. Aquat. Org. 123: 141-157. DOI

Petrov A.A., Dmitrieva E.V., Popyuk M.P., Gerasev P.I., Petrov S.A. 2017: Musculoskeletal and nervous systems of the attachment organ in three species of Diplectanum (Monogenea: Dactylogyroidea). Folia Parasitol. 64: 1-22. DOI

Petrov A.A., Gerasev P.I. 2019: Muscular arrangement and sclerite morphology in the haptor of Tetraonchus monenteron (Monogenea, Dactylogyridea). Acta Parasitol. 64: 138-147. PubMed DOI

Petrov A.A., Gerasev P.I., Popyuk M.P., Dmitrieva E.V. 2016: Haptoral neuromusculature in two species of Dactylogyrus Diesing, 1850 (Monogenea: Dactylogyridae). Syst. Parasitol. 93: 337-354. PubMed DOI

Petrov A.A., Popyuk M.P., Dmitrieva E.V. Gerasev P.I. 2015: Architecture of haptoral musculature in three species ofLigophorus (Monogenea, Ancyrocephalidae). Trudy Zool. Inst. 319: 244-256. DOI

Puelles V.G., van der Wolde J.W., Schulze K.E., Short K.M., Wong M.N., Bensley J.G., Cullen-McEwen L.A., Caruana G., Hokke S.N., Li J., Firth S.D., Harper I.S., Nikolic-Paterson D.J., Bertram J.F. 2016: Validation of a three-dimensional method for counting and sizing podocytes in whole glomeruli. J. Am. Soc. Nephrol. 27: 3093-3104. PubMed DOI

Ross K.F. 1954: Measurement of the refractive index of cytoplasmic inclusions in living cells by the interference microscope. Nature 174: 836-837. DOI

Rozario T., Newmark P.A. 2015: A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp. Parasitol. 158: 31-41. PubMed DOI

Semprucci, F., Burattini, S., Kim, H., Hong, J., Lee, W., Guidi, L., Falcieri, E., Balsamo, M. 2016: Application of confocal laser scanning microscopy in the taxonomy of free-living marine nematodes. Microscopie 26: 48-57.

Silva-Leitão F.W., Biolchini C.L., Neves R.H., Machado-Silva J.R. 2009: Development of Schistosoma mansoni in the laboratory rat analyzed by light and confocal laser scanning microscopy. Exp. Parasitol. 123: 292-295. PubMed DOI

Stockert J.C., Llorente A.R., Del Castillo P., Gómez A. 1990: Chromatin fluorescence after carmine staining. Stain Technol. 65: 299-302. DOI

Theisen S. 2019: Indonesian marine fish parasite biodiversity. PhD Thesis. Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, 243 pp.

Theisen S., Palm H.W., Al-Jufaili S.H., Kleinertz S. 2017: Pseudempleurosoma haywardi sp. nov. (Monogenea: Ancyrocephalidae (sensu lato) Bychowsky and Nagibina, 1968): an endoparasite of croakers (Teleostei: Sciaenidae) from Indonesia. PLoS ONE 12: e0184376. PubMed DOI

Theisen S., Palm H.W., Stolz H., Al-Jufaili S.H., Kleinertz S. 2018: Endoparasitic Paradiplectanotrema klimpeli sp. nov. (Monogenea: Ancyrocephalidae) from the greater lizardfish Saurida tumbil (Teleostei: Synodontidae) in Indonesia. Parasitol. Open 4: e13. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...