Microwave Irradiation-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of pH-Responsive Diblock Copolymer Nanoparticles
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
36467927
PubMed Central
PMC9713868
DOI
10.1021/acsomega.2c04036
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.
See more in PubMed
Canning S. L.; Smith G. N.; Armes S. P. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016, 49, 1985–2001. 10.1021/acs.macromol.5b02602. PubMed DOI PMC
Mai Y.; Eisenberg A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969.10.1039/c2cs35115c. PubMed DOI
Rodriguezhernandez J.; Checot F.; Gnanou Y.; Lecommandoux S. Toward ‘Smart’ Nano-Objects by Self-Assembly of Block Copolymers in Solution. Prog. Polym. Sci. 2005, 30, 691–724. 10.1016/j.progpolymsci.2005.04.002. DOI
Zhang L.; Eisenberg A. Multiple Morphologies of “Crew-Cut” Aggregates of Polystyrene-b-Poly(Acrylic Acid) Block Copolymers. Science 1995, 268, 1728–1731. 10.1126/science.268.5218.1728. PubMed DOI
Jia L.; Zhao G.; Shi W.; Coombs N.; Gourevich I.; Walker G. C.; Guerin G.; Manners I.; Winnik M. A. A Design Strategy for the Hierarchical Fabrication of Colloidal Hybrid Mesostructures. Nat. Commun. 2014, 5, 3882.10.1038/ncomms4882. PubMed DOI
Reynhout I. C.; Cornelissen J. J. L. M.; Nolte R. J. M. Synthesis of Polymer-Biohybrids: From Small to Giant Surfactants. Acc. Chem. Res. 2009, 42, 681.10.1021/ar800143a. PubMed DOI
Tan J.; Bai Y.; Zhang X.; Zhang L. Room Temperature Synthesis of Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate)-Based Diblock Copolymer Nano-Objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Polym. Chem. 2016, 7, 2372–2380. 10.1039/C6PY00022C. DOI
Zhang J.; Wang L.-Q.; Wang H.; Tu K. Micellization Phenomena of Amphiphilic Block Copolymers Based on Methoxy Poly(Ethylene Glycol) and Either Crystalline or Amorphous Poly(Caprolactone-b-Lactide). Biomacromolecules 2006, 7, 2492–2500. 10.1021/bm0601732. PubMed DOI
Charleux B.; Delaittre G.; Rieger J.; D’Agosto F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 2012, 45, 6753–6765. 10.1021/ma300713f. DOI
Li S.; Han G.; Zhang W. Cross-Linking Approaches for Block Copolymer Nano-Assemblies via RAFT-Mediated Polymerization-Induced Self-Assembly. Polym. Chem. 2020, 11, 4681–4692. 10.1039/D0PY00627K. DOI
Yeow J.; Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017, 4, 170013710.1002/advs.201700137. PubMed DOI PMC
Biais P.; Colombani O.; Bouteiller L.; Stoffelbach F.; Rieger J. Unravelling the Formation of BAB Block Copolymer Assemblies during PISA in Water. Polym. Chem. 2020, 11, 4568–4578. 10.1039/D0PY00422G. DOI
Gonzato C.; Semsarilar M.; Jones E. R.; Li F.; Krooshof G. J. P.; Wyman P.; Mykhaylyk O. O.; Tuinier R.; Armes S. P. Rational Synthesis of Low-Polydispersity Block Copolymer Vesicles in Concentrated Solution via Polymerization-Induced Self-Assembly. J. Am. Chem. Soc. 2014, 136, 11100–11106. 10.1021/ja505406s. PubMed DOI
Warren N. J.; Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. 10.1021/ja502843f. PubMed DOI PMC
Blackman L. D.; Doncom K. E. B.; Gibson M. I.; O’Reilly R. K. Comparison of Photo- and Thermally Initiated Polymerization-Induced Self-Assembly: A Lack of End Group Fidelity Drives the Formation of Higher Order Morphologies. Polym. Chem. 2017, 8, 2860–2871. 10.1039/C7PY00407A. PubMed DOI PMC
Fielding L. A.; Derry M. J.; Ladmiral V.; Rosselgong J.; Rodrigues A. M.; Ratcliffe L. P. D.; Sugihara S.; Armes S. P. RAFT Dispersion Polymerization in Non-Polar Solvents: Facile Production of Block Copolymer Spheres, Worms and Vesicles in n-Alkanes. Chem. Sci. 2013, 4, 2081.10.1039/c3sc50305d. DOI
Khan H.; Cao M.; Duan W.; Ying T.; Zhang W. Synthesis of Diblock Copolymer Nano-Assemblies: Comparison between PISA and Micellization. Polymer 2018, 150, 204–213. 10.1016/j.polymer.2018.07.048. DOI
György C.; Hunter S. J.; Girou C.; Derry M. J.; Armes S. P. Synthesis of Poly(Stearyl Methacrylate)-Poly(2-Hydroxypropyl Methacrylate) Diblock Copolymer Nanoparticles via RAFT Dispersion Polymerization of 2-Hydroxypropyl Methacrylate in Mineral Oil. Polym. Chem. 2020, 11, 4579–4590. 10.1039/D0PY00562B. DOI
Zeng M.; Cao X.; Xu H.; Gan W.; Smith B. D.; Gao H.; Yuan J. Synthesis and Direct Assembly of Linear–Dendritic Copolymers via CuAAC Click Polymerization-Induced Self-Assembly (CPISA). Polym. Chem. 2020, 11, 936–943. 10.1039/C9PY01636H. DOI
Sarkar J.; Xiao L.; Jackson A. W.; van Herk A. M.; Goto A. Synthesis of Transition-Metal-Free and Sulfur-Free Nanoparticles and Nanocapsules via Reversible Complexation Mediated Polymerization (RCMP) and Polymerization Induced Self-Assembly (PISA). Polym. Chem. 2018, 9, 4900–4907. 10.1039/C8PY01117F. DOI
Zhang Y.; Han G.; Cao M.; Guo T.; Zhang W. Influence of Solvophilic Homopolymers on RAFT Polymerization-Induced Self-Assembly. Macromolecules 2018, 51, 4397–4406. 10.1021/acs.macromol.8b00690. DOI
Cornel E. J.; Jiang J.; Chen S.; Du J. Principles and Characteristics of Polymerization-Induced Self-Assembly with Various Polymerization Techniques. CCS Chem. 2021, 3, 2104–2125. 10.31635/ccschem.020.202000470. DOI
Moad G.; Rizzardo E.; Thang S. H. Toward Living Radical Polymerization. Acc. Chem. Res. 2008, 41, 1133–1142. 10.1021/ar800075n. PubMed DOI
Perrier S. 50th Anniversary Perspective : RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. 10.1021/acs.macromol.7b00767. DOI
Chong Y. K.; Krstina J.; Le T. P. T.; Moad G.; Postma A.; Rizzardo E.; Thang S. H. Thiocarbonylthio Compounds [SC(Ph)S–R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36, 2256–2272. 10.1021/ma020882h. DOI
Cai W.; Wan W.; Hong C.; Huang C.; Pan C. Morphology Transitions in RAFT Polymerization. Soft Matter 2010, 6, 5554.10.1039/c0sm00284d. DOI
Semsarilar M.; Jones E. R.; Armes S. P. Comparison of Pseudo-Living Character of RAFT Polymerizations Conducted under Homogeneous and Heterogeneous Conditions. Polym. Chem. 2014, 5, 195–203. 10.1039/C3PY01042B. DOI
Fielding L. A.; Lane J. A.; Derry M. J.; Mykhaylyk O. O.; Armes S. P. Thermo-Responsive Diblock Copolymer Worm Gels in Non-Polar Solvents. J. Am. Chem. Soc. 2014, 136, 5790–5798. 10.1021/ja501756h. PubMed DOI PMC
Blanazs A.; Ryan A. J.; Armes S. P. Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration. Macromolecules 2012, 45, 5099–5107. 10.1021/ma301059r. DOI
Sugihara S.; Armes S. P.; Blanazs A.; Lewis A. L. Non-Spherical Morphologies from Cross-Linked Biomimetic Diblock Copolymers Using RAFT Aqueous Dispersion Polymerization. Soft Matter 2011, 7, 10787.10.1039/c1sm06593a. DOI
Cunningham V. J.; Alswieleh A. M.; Thompson K. L.; Williams M.; Leggett G. J.; Armes S. P.; Musa O. M. Poly(Glycerol Monomethacrylate)–Poly(Benzyl Methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion Polymerization: Synthesis, Characterization, and Interfacial Activity. Macromolecules 2014, 47, 5613–5623. 10.1021/ma501140h. DOI
Rieger J.; Stoffelbach F.; Bui C.; Alaimo D.; Jérôme C.; Charleux B. Amphiphilic Poly(Ethylene Oxide) Macromolecular RAFT Agent as a Stabilizer and Control Agent in Ab Initio Batch Emulsion Polymerization. Macromolecules 2008, 41, 4065–4068. 10.1021/ma800544v. DOI
Ferguson C. J.; Hughes R. J.; Pham B. T. T.; Hawkett B. S.; Gilbert R. G.; Serelis A. K.; Such C. H. Effective Ab Initio Emulsion Polymerization under RAFT Control. Macromolecules 2002, 35, 9243–9245. 10.1021/ma025626j. DOI
Yeole N.; Hundiwale D.; Jana T. Synthesis of Core–Shell Polystyrene Nanoparticles by Surfactant Free Emulsion Polymerization Using Macro-RAFT Agent. J. Colloid Interface Sci. 2011, 354, 506–510. 10.1016/j.jcis.2010.11.021. PubMed DOI
Yeole N.; Kutcherlapati S. N. R.; Jana T. Tunable Core–Shell Nanoparticles: Macro-RAFT Mediated One Pot Emulsion Polymerization. RSC Adv. 2013, 4, 2382–2388. 10.1039/C3RA44722G. DOI
Neal T. J.; Penfold N. J. W.; Armes S. P. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew. Chem., Int. Ed. 2022, 61, e20220737610.1002/anie.202207376. PubMed DOI PMC
Chan D. H. H.; Cockram A. A.; Gibson R. R.; Kynaston E. L.; Lindsay C.; Taylor P.; Armes S. P. RAFT Aqueous Emulsion Polymerization of Methyl Methacrylate: Observation of Unexpected Constraints When Employing a Non-Ionic Steric Stabilizer Block. Polym. Chem. 2021, 12, 5760–5769. 10.1039/D1PY01008E. DOI
North S. M.; Armes S. P. One-Pot Synthesis and Aqueous Solution Properties of PH-Responsive Schizophrenic Diblock Copolymer Nanoparticles Prepared via RAFT Aqueous Dispersion Polymerization. Polym. Chem. 2021, 12, 5842–5850. 10.1039/D1PY01114F. DOI
Hunter S. J.; Lovett J. R.; Mykhaylyk O. O.; Jones E. R.; Armes S. P. Synthesis of Diblock Copolymer Spheres, Worms and Vesicles via RAFT Aqueous Emulsion Polymerization of Hydroxybutyl Methacrylate. Polym. Chem. 2021, 12, 3629–3639. 10.1039/D1PY00517K. DOI
Semsarilar M.; Ladmiral V.; Blanazs A.; Armes S. P. Anionic Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion Polymerization. Langmuir 2012, 28, 914–922. 10.1021/la203991y. PubMed DOI
He W.-D.; Sun X.-L.; Wan W.-M.; Pan C.-Y. Multiple Morphologies of PAA-b-PSt Assemblies throughout RAFT Dispersion Polymerization of Styrene with PAA Macro-CTA. Macromolecules 2011, 44, 3358–3365. 10.1021/ma2000674. DOI
Wan W.-M.; Sun X.-L.; Pan C.-Y. Morphology Transition in RAFT Polymerization for Formation of Vesicular Morphologies in One Pot. Macromolecules 2009, 42, 4950–4952. 10.1021/ma901014m. DOI
Pei Y.; Lowe A. B. Polymerization-Induced Self-Assembly: Ethanolic RAFT Dispersion Polymerization of 2-Phenylethyl Methacrylate. Polym. Chem. 2014, 5, 2342–2351. 10.1039/C3PY01719B. DOI
Zhang X.; Boissé S.; Zhang W.; Beaunier P.; D’Agosto F.; Rieger J.; Charleux B. Well-Defined Amphiphilic Block Copolymers and Nano-Objects Formed in Situ via RAFT-Mediated Aqueous Emulsion Polymerization. Macromolecules 2011, 44, 4149–4158. 10.1021/ma2005926. DOI
Cockram A. A.; Neal T. J.; Derry M. J.; Mykhaylyk O. O.; Williams N. S. J.; Murray M. W.; Emmett S. N.; Armes S. P. Effect of Monomer Solubility on the Evolution of Copolymer Morphology during Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2017, 50, 796–802. 10.1021/acs.macromol.6b02309. PubMed DOI PMC
Byard S. J.; O’Brien C. T.; Derry M. J.; Williams M.; Mykhaylyk O. O.; Blanazs A.; Armes S. P. Unique Aqueous Self-Assembly Behavior of a Thermoresponsive Diblock Copolymer. Chem. Sci. 2020, 11, 396–402. 10.1039/C9SC04197D. PubMed DOI PMC
Blanazs A.; Madsen J.; Battaglia G.; Ryan A. J.; Armes S. P. Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles?. J. Am. Chem. Soc. 2011, 133, 16581–16587. 10.1021/ja206301a. PubMed DOI
Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT Aqueous Dispersion Polymerization Yields Poly(Ethylene Glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. 10.1021/ja410593n. PubMed DOI PMC
Semsarilar M.; Ladmiral V.; Blanazs A.; Armes S. P. Cationic Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion Polymerization. Langmuir 2013, 29, 7416–7424. 10.1021/la304279y. PubMed DOI
Ladmiral V.; Charlot A.; Semsarilar M.; Armes S. P. Synthesis and Characterization of Poly(Amino Acid Methacrylate)-Stabilized Diblock Copolymer Nano-Objects. Polym. Chem. 2015, 6, 1805–1816. 10.1039/C4PY01556H. DOI
Jäger E.; Jäger A.; Etrych T.; Giacomelli F. C.; Chytil P.; Jigounov A.; Putaux J.-L.; Říhová B.; Ulbrich K.; Štěpánek P. Self-Assembly of Biodegradable Copolyester and Reactive HPMA-Based Polymers into Nanoparticles as an Alternative Stealth Drug Delivery System. Soft Matter 2012, 8, 9563.10.1039/c2sm26150b. DOI
Duncan R.; Vicent M. J. Do HPMA Copolymer Conjugates Have a Future as Clinically Useful Nanomedicines? A Critical Overview of Current Status and Future Opportunities☆. Adv. Drug Delivery Rev. 2010, 62, 272–282. 10.1016/j.addr.2009.12.005. PubMed DOI
Talelli M.; Rijcken C. J. F.; van Nostrum C. F.; Storm G.; Hennink W. E. Micelles Based on HPMA Copolymers☆. Adv. Drug Delivery Rev. 2010, 62, 231–239. 10.1016/j.addr.2009.11.029. PubMed DOI
Kopeček J.; Kopečková P. HPMA Copolymers: Origins, Early Developments, Present, and Future☆. Adv. Drug Delivery Rev. 2010, 62, 122–149. 10.1016/j.addr.2009.10.004. PubMed DOI PMC
Giacomelli F. C.; Stepánek P.; Giacomelli C.; Schmidt V.; Jäger E.; Jäger A.; Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter 2011, 7, 9316.10.1039/c1sm05992k. DOI
Bütün V.; Armes S.; Billingham N. Synthesis and Aqueous Solution Properties of Near-Monodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers. Polymer 2001, 42, 5993–6008. 10.1016/S0032-3861(01)00066-0. DOI
Garrett E. T.; Pei Y.; Lowe A. B. Microwave-Assisted Synthesis of Block Copolymer Nanoparticles via RAFT with Polymerization-Induced Self-Assembly in Methanol. Polym. Chem. 2016, 7, 297–301. 10.1039/C5PY01672J. DOI
Sincari V.; Petrova S. L.; Konefał R.; Hruby M.; Jäger E. Microwave-Assisted RAFT Polymerization of N-(2-Hydroxypropyl) Methacrylamide and Its Relevant Copolymers. React. Funct. Polym. 2021, 162, 10487510.1016/j.reactfunctpolym.2021.104875. DOI
Ulbrich K.; Šubr V.; Strohalm J.; Plocová D.; Jelínková M.; Říhová B. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. J. Controlled Release 2000, 64, 63–79. 10.1016/S0168-3659(99)00141-8. PubMed DOI
Danial M.; Telwatte S.; Tyssen D.; Cosson S.; Tachedjian G.; Moad G.; Postma A. Combination Anti-HIV Therapy via Tandem Release of Prodrugs from Macromolecular Carriers. Polym. Chem. 2016, 7, 7477–7487. 10.1039/C6PY01882C. DOI
Albuquerque L. J. C.; Sincari V.; Jäger A.; Konefał R.; Pánek J.; Černoch P.; Pavlova E.; Štěpánek P.; Giacomelli F. C.; Jäger E. Microfluidic-Assisted Engineering of Quasi-Monodisperse PH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir 2019, 35, 8363–8372. 10.1021/acs.langmuir.9b01009. PubMed DOI
Jones E. R.; Semsarilar M.; Wyman P.; Boerakker M.; Armes S. P. Addition of Water to an Alcoholic RAFT PISA Formulation Leads to Faster Kinetics but Limits the Evolution of Copolymer Morphology. Polym. Chem. 2016, 7, 851–859. 10.1039/C5PY01795E. DOI
Lovell P. A.; Schork F. J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 21, 4396–4441. 10.1021/acs.biomac.0c00769. PubMed DOI
Desai R. C.; Kapral R.. Propagating Chemical Fronts. In Dynamics of Self-Organized and Self-Assembled Structures; Cambridge University Press, 2009; pp 157–163.
Podgornik R. Principles of Condensed Matter Physics. J. Stat. Phys. 1996, 83, 1263–1265. 10.1007/BF02179565. DOI
Blanazs A.; Armes S. P.; Ryan A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009, 30, 267–277. 10.1002/marc.200800713. PubMed DOI
Antonietti M.; Förster S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323–1333. 10.1002/adma.200300010. DOI
Černoch P.; Jager A.; Černochová Z.; Sincari V.; Albuquerque L. J. C.; Konefal R.; Pavlova E.; Giacomelli F. C.; Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)- b -Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021, 12, 2868–2880. 10.1039/D1PY00141H. DOI
Liao J.; Li W.; Peng J.; Yang Q.; Li H.; Wei Y.; Zhang X.; Qian Z. Combined Cancer Photothermal-Chemotherapy Based on Doxorubicin/Gold Nanorod-Loaded Polymersomes. Theranostics 2015, 5, 345–356. 10.7150/thno.10731. PubMed DOI PMC
Wu M.; Zhu Y.; Jiang W. Release Behavior of Polymeric Vesicles in Solution Controlled by External Electrostatic Field. ACS Macro Lett. 2016, 5, 1212–1216. 10.1021/acsmacrolett.6b00699. PubMed DOI
Greenspan P.; Mayer E. P.; Fowler S. D. Nile Red: A Selective Fluorescent Stain for Intracellular Lipid Droplets. J. Cell Biol. 1985, 100, 965–973. 10.1083/jcb.100.3.965. PubMed DOI PMC
Diaz G.; Melis M.; Batetta B.; Angius F.; Falchi A. M. Hydrophobic Characterization of Intracellular Lipids in Situ by Nile Red Red/Yellow Emission Ratio. Micron 2008, 39, 819–824. 10.1016/j.micron.2008.01.001. PubMed DOI
Yu H.; Xu Z.; Wang D.; Chen X.; Zhang Z.; Yin Q.; Li Y. Intracellular PH-Activated PEG-b-PDPA Wormlike Micelles for Hydrophobic Drug Delivery. Polym. Chem. 2013, 4, 5052.10.1039/c3py00849e. DOI
Pedersen J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. J. Appl. Crystallogr. 2000, 33, 637–640. 10.1107/S0021889899012248. DOI
Bang J.; Jain S.; Li Z.; Lodge T. P.; Pedersen J. S.; Kesselman E.; Talmon Y. Sphere, Cylinder, and Vesicle Nanoaggregates in Poly(Styrene-b-Isoprene) Diblock Copolymer Solutions. Macromolecules 2006, 39, 1199–1208. 10.1021/ma052023+. DOI
Akpinar B.; Fielding L. A.; Cunningham V. J.; Ning Y.; Mykhaylyk O. O.; Fowler P. W.; Armes S. P. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles. Macromolecules 2016, 49, 5160–5171. 10.1021/acs.macromol.6b00987. PubMed DOI PMC
Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. PH-Responsive Polymersome-Mediated Delivery of Doxorubicin into Tumor Sites Enhances the Therapeutic Efficacy and Reduces Cardiotoxic Effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI
Giacomelli C.; Le Men L.; Borsali R.; Lai-Kee-Him J.; Brisson A.; Armes S. P.; Lewis A. L. Phosphorylcholine-Based PH-Responsive Diblock Copolymer Micelles as Drug Delivery Vehicles: Light Scattering, Electron Microscopy, and Fluorescence Experiments. Biomacromolecules 2006, 7, 817–828. 10.1021/bm0508921. PubMed DOI
Sun J.; Wang Z.; Cao A.; Sheng R. Synthesis of Crosslinkable Diblock Terpolymers PDPA-b-P(NMS-co-OEG) and Preparation of Shell-Crosslinked PH/Redox-Dual Responsive Micelles as Smart Nanomaterials. RSC Adv. 2019, 9, 34535–34546. 10.1039/C9RA05082E. PubMed DOI PMC
Alibolandi M.; Ramezani M.; Abnous K.; Sadeghi F.; Hadizadeh F. Comparative Evaluation of Polymersome versus Micelle Structures as Vehicles for the Controlled Release of Drugs. J. Nanopart. Res. 2015, 17, 76.10.1007/s11051-015-2878-8. DOI
Lu Y.; Zhang E.; Yang J.; Cao Z. Strategies to Improve Micelle Stability for Drug Delivery. Nano Res. 2018, 11, 4985–4998. 10.1007/s12274-018-2152-3. PubMed DOI PMC