Microwave Irradiation-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of pH-Responsive Diblock Copolymer Nanoparticles

. 2022 Nov 29 ; 7 (47) : 42711-42722. [epub] 20221117

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36467927

Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.

Zobrazit více v PubMed

Canning S. L.; Smith G. N.; Armes S. P. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016, 49, 1985–2001. 10.1021/acs.macromol.5b02602. PubMed DOI PMC

Mai Y.; Eisenberg A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969.10.1039/c2cs35115c. PubMed DOI

Rodriguezhernandez J.; Checot F.; Gnanou Y.; Lecommandoux S. Toward ‘Smart’ Nano-Objects by Self-Assembly of Block Copolymers in Solution. Prog. Polym. Sci. 2005, 30, 691–724. 10.1016/j.progpolymsci.2005.04.002. DOI

Zhang L.; Eisenberg A. Multiple Morphologies of “Crew-Cut” Aggregates of Polystyrene-b-Poly(Acrylic Acid) Block Copolymers. Science 1995, 268, 1728–1731. 10.1126/science.268.5218.1728. PubMed DOI

Jia L.; Zhao G.; Shi W.; Coombs N.; Gourevich I.; Walker G. C.; Guerin G.; Manners I.; Winnik M. A. A Design Strategy for the Hierarchical Fabrication of Colloidal Hybrid Mesostructures. Nat. Commun. 2014, 5, 3882.10.1038/ncomms4882. PubMed DOI

Reynhout I. C.; Cornelissen J. J. L. M.; Nolte R. J. M. Synthesis of Polymer-Biohybrids: From Small to Giant Surfactants. Acc. Chem. Res. 2009, 42, 681.10.1021/ar800143a. PubMed DOI

Tan J.; Bai Y.; Zhang X.; Zhang L. Room Temperature Synthesis of Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate)-Based Diblock Copolymer Nano-Objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Polym. Chem. 2016, 7, 2372–2380. 10.1039/C6PY00022C. DOI

Zhang J.; Wang L.-Q.; Wang H.; Tu K. Micellization Phenomena of Amphiphilic Block Copolymers Based on Methoxy Poly(Ethylene Glycol) and Either Crystalline or Amorphous Poly(Caprolactone-b-Lactide). Biomacromolecules 2006, 7, 2492–2500. 10.1021/bm0601732. PubMed DOI

Charleux B.; Delaittre G.; Rieger J.; D’Agosto F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 2012, 45, 6753–6765. 10.1021/ma300713f. DOI

Li S.; Han G.; Zhang W. Cross-Linking Approaches for Block Copolymer Nano-Assemblies via RAFT-Mediated Polymerization-Induced Self-Assembly. Polym. Chem. 2020, 11, 4681–4692. 10.1039/D0PY00627K. DOI

Yeow J.; Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017, 4, 170013710.1002/advs.201700137. PubMed DOI PMC

Biais P.; Colombani O.; Bouteiller L.; Stoffelbach F.; Rieger J. Unravelling the Formation of BAB Block Copolymer Assemblies during PISA in Water. Polym. Chem. 2020, 11, 4568–4578. 10.1039/D0PY00422G. DOI

Gonzato C.; Semsarilar M.; Jones E. R.; Li F.; Krooshof G. J. P.; Wyman P.; Mykhaylyk O. O.; Tuinier R.; Armes S. P. Rational Synthesis of Low-Polydispersity Block Copolymer Vesicles in Concentrated Solution via Polymerization-Induced Self-Assembly. J. Am. Chem. Soc. 2014, 136, 11100–11106. 10.1021/ja505406s. PubMed DOI

Warren N. J.; Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. 10.1021/ja502843f. PubMed DOI PMC

Blackman L. D.; Doncom K. E. B.; Gibson M. I.; O’Reilly R. K. Comparison of Photo- and Thermally Initiated Polymerization-Induced Self-Assembly: A Lack of End Group Fidelity Drives the Formation of Higher Order Morphologies. Polym. Chem. 2017, 8, 2860–2871. 10.1039/C7PY00407A. PubMed DOI PMC

Fielding L. A.; Derry M. J.; Ladmiral V.; Rosselgong J.; Rodrigues A. M.; Ratcliffe L. P. D.; Sugihara S.; Armes S. P. RAFT Dispersion Polymerization in Non-Polar Solvents: Facile Production of Block Copolymer Spheres, Worms and Vesicles in n-Alkanes. Chem. Sci. 2013, 4, 2081.10.1039/c3sc50305d. DOI

Khan H.; Cao M.; Duan W.; Ying T.; Zhang W. Synthesis of Diblock Copolymer Nano-Assemblies: Comparison between PISA and Micellization. Polymer 2018, 150, 204–213. 10.1016/j.polymer.2018.07.048. DOI

György C.; Hunter S. J.; Girou C.; Derry M. J.; Armes S. P. Synthesis of Poly(Stearyl Methacrylate)-Poly(2-Hydroxypropyl Methacrylate) Diblock Copolymer Nanoparticles via RAFT Dispersion Polymerization of 2-Hydroxypropyl Methacrylate in Mineral Oil. Polym. Chem. 2020, 11, 4579–4590. 10.1039/D0PY00562B. DOI

Zeng M.; Cao X.; Xu H.; Gan W.; Smith B. D.; Gao H.; Yuan J. Synthesis and Direct Assembly of Linear–Dendritic Copolymers via CuAAC Click Polymerization-Induced Self-Assembly (CPISA). Polym. Chem. 2020, 11, 936–943. 10.1039/C9PY01636H. DOI

Sarkar J.; Xiao L.; Jackson A. W.; van Herk A. M.; Goto A. Synthesis of Transition-Metal-Free and Sulfur-Free Nanoparticles and Nanocapsules via Reversible Complexation Mediated Polymerization (RCMP) and Polymerization Induced Self-Assembly (PISA). Polym. Chem. 2018, 9, 4900–4907. 10.1039/C8PY01117F. DOI

Zhang Y.; Han G.; Cao M.; Guo T.; Zhang W. Influence of Solvophilic Homopolymers on RAFT Polymerization-Induced Self-Assembly. Macromolecules 2018, 51, 4397–4406. 10.1021/acs.macromol.8b00690. DOI

Cornel E. J.; Jiang J.; Chen S.; Du J. Principles and Characteristics of Polymerization-Induced Self-Assembly with Various Polymerization Techniques. CCS Chem. 2021, 3, 2104–2125. 10.31635/ccschem.020.202000470. DOI

Moad G.; Rizzardo E.; Thang S. H. Toward Living Radical Polymerization. Acc. Chem. Res. 2008, 41, 1133–1142. 10.1021/ar800075n. PubMed DOI

Perrier S. 50th Anniversary Perspective : RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. 10.1021/acs.macromol.7b00767. DOI

Chong Y. K.; Krstina J.; Le T. P. T.; Moad G.; Postma A.; Rizzardo E.; Thang S. H. Thiocarbonylthio Compounds [SC(Ph)S–R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36, 2256–2272. 10.1021/ma020882h. DOI

Cai W.; Wan W.; Hong C.; Huang C.; Pan C. Morphology Transitions in RAFT Polymerization. Soft Matter 2010, 6, 5554.10.1039/c0sm00284d. DOI

Semsarilar M.; Jones E. R.; Armes S. P. Comparison of Pseudo-Living Character of RAFT Polymerizations Conducted under Homogeneous and Heterogeneous Conditions. Polym. Chem. 2014, 5, 195–203. 10.1039/C3PY01042B. DOI

Fielding L. A.; Lane J. A.; Derry M. J.; Mykhaylyk O. O.; Armes S. P. Thermo-Responsive Diblock Copolymer Worm Gels in Non-Polar Solvents. J. Am. Chem. Soc. 2014, 136, 5790–5798. 10.1021/ja501756h. PubMed DOI PMC

Blanazs A.; Ryan A. J.; Armes S. P. Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration. Macromolecules 2012, 45, 5099–5107. 10.1021/ma301059r. DOI

Sugihara S.; Armes S. P.; Blanazs A.; Lewis A. L. Non-Spherical Morphologies from Cross-Linked Biomimetic Diblock Copolymers Using RAFT Aqueous Dispersion Polymerization. Soft Matter 2011, 7, 10787.10.1039/c1sm06593a. DOI

Cunningham V. J.; Alswieleh A. M.; Thompson K. L.; Williams M.; Leggett G. J.; Armes S. P.; Musa O. M. Poly(Glycerol Monomethacrylate)–Poly(Benzyl Methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion Polymerization: Synthesis, Characterization, and Interfacial Activity. Macromolecules 2014, 47, 5613–5623. 10.1021/ma501140h. DOI

Rieger J.; Stoffelbach F.; Bui C.; Alaimo D.; Jérôme C.; Charleux B. Amphiphilic Poly(Ethylene Oxide) Macromolecular RAFT Agent as a Stabilizer and Control Agent in Ab Initio Batch Emulsion Polymerization. Macromolecules 2008, 41, 4065–4068. 10.1021/ma800544v. DOI

Ferguson C. J.; Hughes R. J.; Pham B. T. T.; Hawkett B. S.; Gilbert R. G.; Serelis A. K.; Such C. H. Effective Ab Initio Emulsion Polymerization under RAFT Control. Macromolecules 2002, 35, 9243–9245. 10.1021/ma025626j. DOI

Yeole N.; Hundiwale D.; Jana T. Synthesis of Core–Shell Polystyrene Nanoparticles by Surfactant Free Emulsion Polymerization Using Macro-RAFT Agent. J. Colloid Interface Sci. 2011, 354, 506–510. 10.1016/j.jcis.2010.11.021. PubMed DOI

Yeole N.; Kutcherlapati S. N. R.; Jana T. Tunable Core–Shell Nanoparticles: Macro-RAFT Mediated One Pot Emulsion Polymerization. RSC Adv. 2013, 4, 2382–2388. 10.1039/C3RA44722G. DOI

Neal T. J.; Penfold N. J. W.; Armes S. P. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew. Chem., Int. Ed. 2022, 61, e20220737610.1002/anie.202207376. PubMed DOI PMC

Chan D. H. H.; Cockram A. A.; Gibson R. R.; Kynaston E. L.; Lindsay C.; Taylor P.; Armes S. P. RAFT Aqueous Emulsion Polymerization of Methyl Methacrylate: Observation of Unexpected Constraints When Employing a Non-Ionic Steric Stabilizer Block. Polym. Chem. 2021, 12, 5760–5769. 10.1039/D1PY01008E. DOI

North S. M.; Armes S. P. One-Pot Synthesis and Aqueous Solution Properties of PH-Responsive Schizophrenic Diblock Copolymer Nanoparticles Prepared via RAFT Aqueous Dispersion Polymerization. Polym. Chem. 2021, 12, 5842–5850. 10.1039/D1PY01114F. DOI

Hunter S. J.; Lovett J. R.; Mykhaylyk O. O.; Jones E. R.; Armes S. P. Synthesis of Diblock Copolymer Spheres, Worms and Vesicles via RAFT Aqueous Emulsion Polymerization of Hydroxybutyl Methacrylate. Polym. Chem. 2021, 12, 3629–3639. 10.1039/D1PY00517K. DOI

Semsarilar M.; Ladmiral V.; Blanazs A.; Armes S. P. Anionic Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion Polymerization. Langmuir 2012, 28, 914–922. 10.1021/la203991y. PubMed DOI

He W.-D.; Sun X.-L.; Wan W.-M.; Pan C.-Y. Multiple Morphologies of PAA-b-PSt Assemblies throughout RAFT Dispersion Polymerization of Styrene with PAA Macro-CTA. Macromolecules 2011, 44, 3358–3365. 10.1021/ma2000674. DOI

Wan W.-M.; Sun X.-L.; Pan C.-Y. Morphology Transition in RAFT Polymerization for Formation of Vesicular Morphologies in One Pot. Macromolecules 2009, 42, 4950–4952. 10.1021/ma901014m. DOI

Pei Y.; Lowe A. B. Polymerization-Induced Self-Assembly: Ethanolic RAFT Dispersion Polymerization of 2-Phenylethyl Methacrylate. Polym. Chem. 2014, 5, 2342–2351. 10.1039/C3PY01719B. DOI

Zhang X.; Boissé S.; Zhang W.; Beaunier P.; D’Agosto F.; Rieger J.; Charleux B. Well-Defined Amphiphilic Block Copolymers and Nano-Objects Formed in Situ via RAFT-Mediated Aqueous Emulsion Polymerization. Macromolecules 2011, 44, 4149–4158. 10.1021/ma2005926. DOI

Cockram A. A.; Neal T. J.; Derry M. J.; Mykhaylyk O. O.; Williams N. S. J.; Murray M. W.; Emmett S. N.; Armes S. P. Effect of Monomer Solubility on the Evolution of Copolymer Morphology during Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2017, 50, 796–802. 10.1021/acs.macromol.6b02309. PubMed DOI PMC

Byard S. J.; O’Brien C. T.; Derry M. J.; Williams M.; Mykhaylyk O. O.; Blanazs A.; Armes S. P. Unique Aqueous Self-Assembly Behavior of a Thermoresponsive Diblock Copolymer. Chem. Sci. 2020, 11, 396–402. 10.1039/C9SC04197D. PubMed DOI PMC

Blanazs A.; Madsen J.; Battaglia G.; Ryan A. J.; Armes S. P. Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles?. J. Am. Chem. Soc. 2011, 133, 16581–16587. 10.1021/ja206301a. PubMed DOI

Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT Aqueous Dispersion Polymerization Yields Poly(Ethylene Glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. 10.1021/ja410593n. PubMed DOI PMC

Semsarilar M.; Ladmiral V.; Blanazs A.; Armes S. P. Cationic Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion Polymerization. Langmuir 2013, 29, 7416–7424. 10.1021/la304279y. PubMed DOI

Ladmiral V.; Charlot A.; Semsarilar M.; Armes S. P. Synthesis and Characterization of Poly(Amino Acid Methacrylate)-Stabilized Diblock Copolymer Nano-Objects. Polym. Chem. 2015, 6, 1805–1816. 10.1039/C4PY01556H. DOI

Jäger E.; Jäger A.; Etrych T.; Giacomelli F. C.; Chytil P.; Jigounov A.; Putaux J.-L.; Říhová B.; Ulbrich K.; Štěpánek P. Self-Assembly of Biodegradable Copolyester and Reactive HPMA-Based Polymers into Nanoparticles as an Alternative Stealth Drug Delivery System. Soft Matter 2012, 8, 9563.10.1039/c2sm26150b. DOI

Duncan R.; Vicent M. J. Do HPMA Copolymer Conjugates Have a Future as Clinically Useful Nanomedicines? A Critical Overview of Current Status and Future Opportunities☆. Adv. Drug Delivery Rev. 2010, 62, 272–282. 10.1016/j.addr.2009.12.005. PubMed DOI

Talelli M.; Rijcken C. J. F.; van Nostrum C. F.; Storm G.; Hennink W. E. Micelles Based on HPMA Copolymers☆. Adv. Drug Delivery Rev. 2010, 62, 231–239. 10.1016/j.addr.2009.11.029. PubMed DOI

Kopeček J.; Kopečková P. HPMA Copolymers: Origins, Early Developments, Present, and Future☆. Adv. Drug Delivery Rev. 2010, 62, 122–149. 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Giacomelli F. C.; Stepánek P.; Giacomelli C.; Schmidt V.; Jäger E.; Jäger A.; Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter 2011, 7, 9316.10.1039/c1sm05992k. DOI

Bütün V.; Armes S.; Billingham N. Synthesis and Aqueous Solution Properties of Near-Monodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers. Polymer 2001, 42, 5993–6008. 10.1016/S0032-3861(01)00066-0. DOI

Garrett E. T.; Pei Y.; Lowe A. B. Microwave-Assisted Synthesis of Block Copolymer Nanoparticles via RAFT with Polymerization-Induced Self-Assembly in Methanol. Polym. Chem. 2016, 7, 297–301. 10.1039/C5PY01672J. DOI

Sincari V.; Petrova S. L.; Konefał R.; Hruby M.; Jäger E. Microwave-Assisted RAFT Polymerization of N-(2-Hydroxypropyl) Methacrylamide and Its Relevant Copolymers. React. Funct. Polym. 2021, 162, 10487510.1016/j.reactfunctpolym.2021.104875. DOI

Ulbrich K.; Šubr V.; Strohalm J.; Plocová D.; Jelínková M.; Říhová B. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. J. Controlled Release 2000, 64, 63–79. 10.1016/S0168-3659(99)00141-8. PubMed DOI

Danial M.; Telwatte S.; Tyssen D.; Cosson S.; Tachedjian G.; Moad G.; Postma A. Combination Anti-HIV Therapy via Tandem Release of Prodrugs from Macromolecular Carriers. Polym. Chem. 2016, 7, 7477–7487. 10.1039/C6PY01882C. DOI

Albuquerque L. J. C.; Sincari V.; Jäger A.; Konefał R.; Pánek J.; Černoch P.; Pavlova E.; Štěpánek P.; Giacomelli F. C.; Jäger E. Microfluidic-Assisted Engineering of Quasi-Monodisperse PH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir 2019, 35, 8363–8372. 10.1021/acs.langmuir.9b01009. PubMed DOI

Jones E. R.; Semsarilar M.; Wyman P.; Boerakker M.; Armes S. P. Addition of Water to an Alcoholic RAFT PISA Formulation Leads to Faster Kinetics but Limits the Evolution of Copolymer Morphology. Polym. Chem. 2016, 7, 851–859. 10.1039/C5PY01795E. DOI

Lovell P. A.; Schork F. J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 21, 4396–4441. 10.1021/acs.biomac.0c00769. PubMed DOI

Desai R. C.; Kapral R.. Propagating Chemical Fronts. In Dynamics of Self-Organized and Self-Assembled Structures; Cambridge University Press, 2009; pp 157–163.

Podgornik R. Principles of Condensed Matter Physics. J. Stat. Phys. 1996, 83, 1263–1265. 10.1007/BF02179565. DOI

Blanazs A.; Armes S. P.; Ryan A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009, 30, 267–277. 10.1002/marc.200800713. PubMed DOI

Antonietti M.; Förster S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323–1333. 10.1002/adma.200300010. DOI

Černoch P.; Jager A.; Černochová Z.; Sincari V.; Albuquerque L. J. C.; Konefal R.; Pavlova E.; Giacomelli F. C.; Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)- b -Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021, 12, 2868–2880. 10.1039/D1PY00141H. DOI

Liao J.; Li W.; Peng J.; Yang Q.; Li H.; Wei Y.; Zhang X.; Qian Z. Combined Cancer Photothermal-Chemotherapy Based on Doxorubicin/Gold Nanorod-Loaded Polymersomes. Theranostics 2015, 5, 345–356. 10.7150/thno.10731. PubMed DOI PMC

Wu M.; Zhu Y.; Jiang W. Release Behavior of Polymeric Vesicles in Solution Controlled by External Electrostatic Field. ACS Macro Lett. 2016, 5, 1212–1216. 10.1021/acsmacrolett.6b00699. PubMed DOI

Greenspan P.; Mayer E. P.; Fowler S. D. Nile Red: A Selective Fluorescent Stain for Intracellular Lipid Droplets. J. Cell Biol. 1985, 100, 965–973. 10.1083/jcb.100.3.965. PubMed DOI PMC

Diaz G.; Melis M.; Batetta B.; Angius F.; Falchi A. M. Hydrophobic Characterization of Intracellular Lipids in Situ by Nile Red Red/Yellow Emission Ratio. Micron 2008, 39, 819–824. 10.1016/j.micron.2008.01.001. PubMed DOI

Yu H.; Xu Z.; Wang D.; Chen X.; Zhang Z.; Yin Q.; Li Y. Intracellular PH-Activated PEG-b-PDPA Wormlike Micelles for Hydrophobic Drug Delivery. Polym. Chem. 2013, 4, 5052.10.1039/c3py00849e. DOI

Pedersen J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. J. Appl. Crystallogr. 2000, 33, 637–640. 10.1107/S0021889899012248. DOI

Bang J.; Jain S.; Li Z.; Lodge T. P.; Pedersen J. S.; Kesselman E.; Talmon Y. Sphere, Cylinder, and Vesicle Nanoaggregates in Poly(Styrene-b-Isoprene) Diblock Copolymer Solutions. Macromolecules 2006, 39, 1199–1208. 10.1021/ma052023+. DOI

Akpinar B.; Fielding L. A.; Cunningham V. J.; Ning Y.; Mykhaylyk O. O.; Fowler P. W.; Armes S. P. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles. Macromolecules 2016, 49, 5160–5171. 10.1021/acs.macromol.6b00987. PubMed DOI PMC

Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. PH-Responsive Polymersome-Mediated Delivery of Doxorubicin into Tumor Sites Enhances the Therapeutic Efficacy and Reduces Cardiotoxic Effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI

Giacomelli C.; Le Men L.; Borsali R.; Lai-Kee-Him J.; Brisson A.; Armes S. P.; Lewis A. L. Phosphorylcholine-Based PH-Responsive Diblock Copolymer Micelles as Drug Delivery Vehicles: Light Scattering, Electron Microscopy, and Fluorescence Experiments. Biomacromolecules 2006, 7, 817–828. 10.1021/bm0508921. PubMed DOI

Sun J.; Wang Z.; Cao A.; Sheng R. Synthesis of Crosslinkable Diblock Terpolymers PDPA-b-P(NMS-co-OEG) and Preparation of Shell-Crosslinked PH/Redox-Dual Responsive Micelles as Smart Nanomaterials. RSC Adv. 2019, 9, 34535–34546. 10.1039/C9RA05082E. PubMed DOI PMC

Alibolandi M.; Ramezani M.; Abnous K.; Sadeghi F.; Hadizadeh F. Comparative Evaluation of Polymersome versus Micelle Structures as Vehicles for the Controlled Release of Drugs. J. Nanopart. Res. 2015, 17, 76.10.1007/s11051-015-2878-8. DOI

Lu Y.; Zhang E.; Yang J.; Cao Z. Strategies to Improve Micelle Stability for Drug Delivery. Nano Res. 2018, 11, 4985–4998. 10.1007/s12274-018-2152-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace