Synthesis of morphologically diverse dual thermo- and pH-responsive nano-objects via RAFT-mediated emulsion PISA
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41195310
PubMed Central
PMC12584748
DOI
10.1039/d5na00779h
PII: d5na00779h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report a versatile and efficient strategy for the synthesis of dual thermo- and pH-responsive polymeric nano-objects with rich morphological diversity, achieved via RAFT-mediated aqueous emulsion polymerization-induced self-assembly (PISA). Using a thermoresponsive poly(triethylene glycol methyl ether methacrylate) (PTEGMA) macro-chain transfer agent and a pH-sensitive diisopropylaminoethyl methacrylate (DPA) monomer, we generated PTEGMA-b-PDPA diblock copolymer nano-objects under conditions both below and above the LCST of PTEGMA. By systematically varying the length of the PDPA block, we accessed a wide array of morphologies-including micelles, worms, vesicles, and intricate "octopus"-like structures-simply by adjusting the polymerization temperature and hydrophobic block length. These nanostructures displayed clear dual responsiveness: thermally triggered aggregation around ∼40 °C and reversible disassembly in acidic environments. Our findings highlight the precise morphological control achievable through aqueous RAFT-PISA and underscore its potential for designing smart nanomaterials tailored for biomedical and stimuli-responsive applications.
Zobrazit více v PubMed
Charleux B. Delaittre G. Rieger J. D'Agosto F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules. 2012;45(17):6753–6765. doi: 10.1021/ma300713f. DOI
Li S. Han G. Zhang W. Cross-Linking Approaches for Block Copolymer Nano-Assemblies via RAFT-Mediated Polymerization-Induced Self-Assembly. Polym. Chem. 2020;11(29):4681–4692. doi: 10.1039/D0PY00627K. DOI
Yeow J. Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017;4(7):1700137. doi: 10.1002/advs.201700137. PubMed DOI PMC
Audureau N. Coumes F. Guigner J.-M. Guibert C. Stoffelbach F. Rieger J. Dual Thermo- and PH-Responsive N -Cyanomethylacrylamide-Based Nano-Objects Prepared by RAFT-Mediated Aqueous Polymerization-Induced Self-Assembly. Macromolecules. 2022;55(24):10993–11005. doi: 10.1021/acs.macromol.2c01953. DOI
György C. Armes S. P. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew. Chemie Int. Ed. 2023;62(42):1–25. doi: 10.1002/anie.202308372. PubMed DOI PMC
Varlas S. Lawrenson S. B. Arkinstall L. A. O'Reilly R. K. Foster J. C. Self-Assembled Nanostructures from Amphiphilic Block Copolymers Prepared via Ring-Opening Metathesis Polymerization (ROMP) Prog. Polym. Sci. 2020;107:101278. doi: 10.1016/j.progpolymsci.2020.101278. DOI
Fan B. Liu Y. Wan J. Crawford S. Thang S. H. Polymerization-Induced Self-Assembly (PISA) and “Host–Guest” Complexation-Directed Polymer/Gold Nanocomposites. ACS Mater. Lett. 2020;2(5):492–498. doi: 10.1021/acsmaterialslett.0c00043. DOI
Mane S. R. Trending Methods Employed for Polymerization Induced Self-Assembly. New J. Chem. 2020;44(17):6690–6698. doi: 10.1039/C9NJ05638F. DOI
Liu C. Hong C.-Y. Pan C.-Y. Polymerization Techniques in Polymerization-Induced Self-Assembly (PISA) Polym. Chem. 2020;11(22):3673–3689. doi: 10.1039/D0PY00455C. DOI
Cornel E. J. Jiang J. Chen S. Du J. Principles and Characteristics of Polymerization-Induced Self-Assembly with Various Polymerization Techniques. CCS Chem. 2021;3(4):2104–2125. doi: 10.31635/ccschem.020.202000470. DOI
An N. Chen X. Yuan J. Non-Thermally Initiated RAFT Polymerization-Induced Self-Assembly. Polym. Chem. 2021;12(22):3220–3232. doi: 10.1039/D1PY00216C. DOI
Biais P. Colombani O. Bouteiller L. Stoffelbach F. Rieger J. Unravelling the Formation of BAB Block Copolymer Assemblies during PISA in Water. Polym. Chem. 2020;11(28):4568–4578. doi: 10.1039/D0PY00422G. DOI
Gonzato C. Semsarilar M. Jones E. R. Li F. Krooshof G. J. P. Wyman P. Mykhaylyk O. O. Tuinier R. Armes S. P. Rational Synthesis of Low-Polydispersity Block Copolymer Vesicles in Concentrated Solution via Polymerization-Induced Self-Assembly. J. Am. Chem. Soc. 2014;136(31):11100–11106. doi: 10.1021/ja505406s. PubMed DOI
Warren N. J. Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014;136(29):10174–10185. doi: 10.1021/ja502843f. PubMed DOI PMC
Khan H. Cao M. Duan W. Ying T. Zhang W. Synthesis of Diblock Copolymer Nano-Assemblies: Comparison between PISA and Micellization. Polymer. 2018;150:204–213. doi: 10.1016/j.polymer.2018.07.048. DOI
Gu Q. Li H. Cornel E. J. Du J. New Driving Forces and Recent Advances in Polymerization-Induced Self-Assembly. Cell Reports Phys. Sci. 2023;4(7):101495. doi: 10.1016/j.xcrp.2023.101495. DOI
Eades C. B. Stevens K. C. Cabrera D. E. Vereb M. K. Lott M. E. Bowman J. I. Sumerlin B. S. Ultra-High Molecular Weight Polymer Synthesis via Aqueous Dispersion Polymerization. Chem. Sci. 2025;16(13):5573–5578. doi: 10.1039/D5SC00589B. PubMed DOI PMC
Patel A. Maitland G. L. Liarou E. Topham P. D. Derry M. J. Transparent Diblock Copolymer Nanoparticle Dispersions via Efficient RAFT Emulsion Polymerisation in Ionic Liquid. Polym. Chem. 2025;16(23):2767–2777. doi: 10.1039/D5PY00076A. DOI
Cheng S. Wang J. Li C. He S. Liu Y. Wang Y. Dong J. Li X. Morphology and Emulsification of Poly(N-2-(Methacryloyloxy)Ethyl Pyrrolidone)-b-Poly(Benzyl Methacrylate) Assemblies by Polymerization-Induced Self-Assembly. ACS Omega. 2024;9(35):36917–36925. doi: 10.1021/acsomega.3c09315. PubMed DOI PMC
Hunter S. J. Armes S. P. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Langmuir. 2020;36(51):15463–15484. doi: 10.1021/acs.langmuir.0c02595. PubMed DOI PMC
Cunningham V. J. Alswieleh A. M. Thompson K. L. Williams M. Leggett G. J. Armes S. P. Musa O. M. Poly(Glycerol Monomethacrylate)–Poly(Benzyl Methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion Polymerization: Synthesis, Characterization, and Interfacial Activity. Macromolecules. 2014;47(16):5613–5623. doi: 10.1021/ma501140h. DOI
Neal T. J. Penfold N. J. W. Armes S. P. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew. Chemie Int. Ed. 2022;61(33):1–10. doi: 10.1002/anie.202207376. PubMed DOI PMC
Chan D. H. H. Cockram A. A. Gibson R. R. Kynaston E. L. Lindsay C. Taylor P. Armes S. P. RAFT Aqueous Emulsion Polymerization of Methyl Methacrylate: Observation of Unexpected Constraints When Employing a Non-Ionic Steric Stabilizer Block. Polym. Chem. 2021;12(40):5760–5769. doi: 10.1039/D1PY01008E. DOI
Lukáš Petrova S. Sincari V. Konefał R. Pavlova E. Hrubý M. Pokorný V. Jäger E. Microwave Irradiation-Assisted Reversible Addition–Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of PH-Responsive Diblock Copolymer Nanoparticles. ACS Omega. 2022;7(47):42711–42722. doi: 10.1021/acsomega.2c04036. PubMed DOI PMC
GIL E. HUDSON S. Stimuli-Reponsive Polymers and Their Bioconjugates. Prog. Polym. Sci. 2004;29(12):1173–1222. doi: 10.1016/j.progpolymsci.2004.08.003. DOI
Jochum F. D. Theato P. Temperature- and Light-Responsive Smart Polymer Materials. Chem. Soc. Rev. 2013;42(17):7468–7483. doi: 10.1039/C2CS35191A. PubMed DOI
Jochum F. D. zur Borg L. Roth P. J. Theato P. Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups. Macromolecules. 2009;42(20):7854–7862. doi: 10.1021/ma901295f. DOI
Bagheri A. Boyer C. Lim M. Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019;40(2):1–7. doi: 10.1002/marc.201800510. PubMed DOI
Boyer C. A. Miyake G. M. Polymers and Light. Macromol. Rapid Commun. 2017;38(13):1–2. doi: 10.1002/marc.201700327. PubMed DOI
Wang X. Zhou J. Lv X. Zhang B. An Z. Temperature-Induced Morphological Transitions of Poly(Dimethylacrylamide)–Poly(Diacetone Acrylamide) Block Copolymer Lamellae Synthesized via Aqueous Polymerization-Induced Self-Assembly. Macromolecules. 2017;50(18):7222–7232. doi: 10.1021/acs.macromol.7b01644. DOI
Kessel S. Truong N. P. Jia Z. Monteiro M. J. Aqueous Reversible Addition-fragmentation Chain Transfer Dispersion Polymerization of Thermoresponsive Diblock Copolymer Assemblies: Temperature Directed Morphology Transformations. J. Polym. Sci. Part A Polym. Chem. 2012;50(23):4879–4887. doi: 10.1002/pola.26313. DOI
Figg C. A. Simula A. Gebre K. A. Tucker B. S. Haddleton D. M. Sumerlin B. S. Polymerization-Induced Thermal Self-Assembly (PITSA) Chem. Sci. 2015;6(2):1230–1236. doi: 10.1039/C4SC03334E. PubMed DOI PMC
Zhou D. Dong S. Kuchel R. P. Perrier S. Zetterlund P. B. Polymerization Induced Self-Assembly: Tuning of Morphology Using Ionic Strength and PH. Polym. Chem. 2017;8(20):3082–3089. doi: 10.1039/C7PY00552K. DOI
Aflori M. Smart Nanomaterials for Biomedical Applications—A Review. Nanomaterials. 2021;11(2):396. doi: 10.3390/nano11020396. PubMed DOI PMC
Guleria S. Chopra L. Manikanika. Temperature Responsive Hydrogels for Biomedical Applications. Mater. Today Proc. 2023;92:356–363. doi: 10.1016/j.matpr.2023.05.167. DOI
Roy D. Brooks W. L. A. Sumerlin B. S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013;42(17):7214. doi: 10.1039/c3cs35499g. PubMed DOI
Hoffman A. S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Deliv. Rev. 2013;65(1):10–16. doi: 10.1016/j.addr.2012.11.004. PubMed DOI
Chen Y. Gao Y. da Silva L. P. Pirraco R. P. Ma M. Yang L. Reis R. L. Chen J. A Thermo-/PH-Responsive Hydrogel (PNIPAM-PDMA-PAA) with Diverse Nanostructures and Gel Behaviors as a General Drug Carrier for Drug Release. Polym. Chem. 2018;9(29):4063–4072. doi: 10.1039/C8PY00838H. DOI
Kalhapure R. S. Renukuntla J. Thermo- and PH Dual Responsive Polymeric Micelles and Nanoparticles. Chem. Biol. Interact. 2018;295:20–37. doi: 10.1016/j.cbi.2018.07.016. PubMed DOI
Hiruta Y. Kanda Y. Katsuyama N. Kanazawa H. Dual Temperature- and PH-Responsive Polymeric Micelle for Selective and Efficient Two-Step Doxorubicin Delivery. RSC Adv. 2017;7(47):29540–29549. doi: 10.1039/C7RA03579A. DOI
Wang S. Liu H. Wu D. Wang X. Temperature and PH Dual-Stimuli-Responsive Phase-Change Microcapsules for Multipurpose Applications in Smart Drug Delivery. J. Colloid Interface Sci. 2021;583:470–486. doi: 10.1016/j.jcis.2020.09.073. PubMed DOI
Lovett J. R. Warren N. J. Armes S. P. Smallridge M. J. Cracknell R. B. Order–Order Morphological Transitions for Dual Stimulus Responsive Diblock Copolymer Vesicles. Macromolecules. 2016;49(3):1016–1025. doi: 10.1021/acs.macromol.5b02470. PubMed DOI PMC
Lukáš Petrova S. Vragović M. Pavlova E. Černochová Z. Jäger A. Jäger E. Konefał R. Smart Poly(Lactide)-b-Poly(Triethylene Glycol Methyl Ether Methacrylate) (PLA-b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics. 2023;15(4):1191. doi: 10.3390/pharmaceutics15041191. PubMed DOI PMC
Giacomelli F. C. Stepánek P. Giacomelli C. Schmidt V. Jäger E. Jäger A. Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter. 2011;7(19):9316. doi: 10.1039/C1SM05992K. https://dx.doi.org/10.1039/c1sm05992k DOI
Jäger E. Jäger A. Etrych T. Giacomelli F. C. Chytil P. Jigounov A. Putaux J.-L. Říhová B. Ulbrich K. Štěpánek P. Self-Assembly of Biodegradable Copolyester and Reactive HPMA-Based Polymers into Nanoparticles as an Alternative Stealth Drug Delivery System. Soft Matter. 2012;8(37):9563. doi: 10.1039/C2SM26150B. https://dx.doi.org/10.1039/c2sm26150b DOI
Danial M. Telwatte S. Tyssen D. Cosson S. Tachedjian G. Moad G. Postma A. Combination Anti-HIV Therapy via Tandem Release of Prodrugs from Macromolecular Carriers. Polym. Chem. 2016;7(48):7477–7487. doi: 10.1039/C6PY01882C. DOI
Shibata I. Sugawara-Narutaki A. Takahashi R. Polymerization-Induced Self-Assembly Enables Access to Diverse Highly Ordered Structures through Kinetic and Thermodynamic Pathways. Chem. Sci. 2025;16(18):7921–7928. doi: 10.1039/D5SC01703C. PubMed DOI PMC
Zhao X. Sun C. Xiong F. Wang T. Li S. Huo F. Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. Research. 2023;6:1–25. doi: 10.34133/research.0113. PubMed DOI PMC
Černoch P. Jager A. Černochová Z. Sincari V. Albuquerque L. J. C. Konefal R. Pavlova E. Giacomelli F. C. Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)- b -Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021;12(19):2868–2880. doi: 10.1039/D1PY00141H. DOI
Albuquerque L. J. C. Sincari V. Jäger A. Konefał R. Pánek J. Černoch P. Pavlova E. Štěpánek P. Giacomelli F. C. Jäger E. Microfluidic-Assisted Engineering of Quasi-Monodisperse PH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir. 2019;35(25):8363–8372. doi: 10.1021/acs.langmuir.9b01009. PubMed DOI
Debrie C. Coudert N. Guigner J.-M. Coumes F. Guibert C. Harrisson S. Stoffelbach F. Colombani O. Rieger J. Effect of PH on the Incorporation of Acrylic Acid Units in the Core of Polymer Nanoparticles Prepared by PISA and on Their Morphology. Polym. Chem. 2024;15(24):2462–2475. doi: 10.1039/D4PY00373J. DOI
Buckinx A.-L. Rubens M. Cameron N. R. Bakkali-Hassani C. Sokolova A. Junkers T. The Effects of Molecular Weight Dispersity on Block Copolymer Self-Assembly. Polym. Chem. 2022;13(23):3444–3450. doi: 10.1039/D2PY00318J. DOI
Gentekos D. T. Fors B. P. Molecular Weight Distribution Shape as a Versatile Approach to Tailoring Block Copolymer Phase Behavior. ACS Macro Lett. 2018;7(6):677–682. doi: 10.1021/acsmacrolett.8b00295. PubMed DOI
Tobita H. Zhu S. Distribution of Molecular Weight and Composition in Diblock Copolymers. e-Polymers. 2003;3(1):1–17. doi: 10.1515/epoly.2003.3.1.324. DOI
Israelachvili J. N. Mitchell D. J. Ninham B. W. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem. Soc. Faraday Trans. 1976;2:72–1525. doi: 10.1039/f29767201525. DOI
Blanazs A. Armes S. P. Ryan A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009;30(4–5):267–277. doi: 10.1002/marc.200800713. PubMed DOI
Blanazs A. Ryan A. J. Armes S. P. Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration. Macromolecules. 2012;45(12):5099–5107. doi: 10.1021/ma301059r. DOI
Derry M. J. Fielding L. A. Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016;52:1–18. doi: 10.1016/j.progpolymsci.2015.10.002. DOI
Blanazs A. Madsen J. Battaglia G. Ryan A. J. Armes S. P. Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles? J. Am. Chem. Soc. 2011;133(41):16581–16587. doi: 10.1021/ja206301a. PubMed DOI
Derry M. J. Fielding L. A. Warren N. J. Mable C. J. Smith A. J. Mykhaylyk O. O. Armes S. P. In Situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilized Diblock Copolymer Nanoparticles Formed during Polymerization-Induced Self-Assembly in Non-Polar Media. Chem. Sci. 2016;7(8):5078–5090. doi: 10.1039/C6SC01243D. PubMed DOI PMC
Rice S. A. Small Angle Scattering of X-Rays. A. Guinier and G. Fournet. Translated by C. B. Wilson and with a Bibliographical Appendix by K. L. Yudowitch. Wiley, New York, 1955. 268 Pp. $7.50. J. Polym. Sci. 1956;19(93):594. doi: 10.1002/pol.1956.120199326. DOI
Pedersen J. S. Schurtenberger P. Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. Macromolecules. 1996;29(23):7602–7612. doi: 10.1021/ma9607630. DOI
Manfredini N. Tomasoni M. Sponchioni M. Moscatelli D. Influence of the Polymer Microstructure over the Phase Separation of Thermo-Responsive Nanoparticles. Polymers. 2021;13(7):1032. doi: 10.3390/polym13071032. PubMed DOI PMC
Audureau N. Coumes F. Veith C. Guibert C. Guigner J.-M. Stoffelbach F. Rieger J. Synthesis and Characterization of Temperature-Responsive N-Cyanomethylacrylamide-Containing Diblock Copolymer Assemblies in Water. Polymers. 2021;13(24):4424. doi: 10.3390/polym13244424. PubMed DOI PMC
Reimhult E. Schroffenegger M. Lassenberger A. Design Principles for Thermoresponsive Core–Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology. Langmuir. 2019;35(22):7092–7104. doi: 10.1021/acs.langmuir.9b00665. PubMed DOI PMC
Bütün V. Armes S. Billingham N. Synthesis and Aqueous Solution Properties of Near-Monodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers. Polymer. 2001;42(14):5993–6008. doi: 10.1016/S0032-3861(01)00066-0. DOI