Synthesis of morphologically diverse dual thermo- and pH-responsive nano-objects via RAFT-mediated emulsion PISA

. 2025 Dec 02 ; 7 (24) : 8023-8036. [epub] 20251010

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41195310

We report a versatile and efficient strategy for the synthesis of dual thermo- and pH-responsive polymeric nano-objects with rich morphological diversity, achieved via RAFT-mediated aqueous emulsion polymerization-induced self-assembly (PISA). Using a thermoresponsive poly(triethylene glycol methyl ether methacrylate) (PTEGMA) macro-chain transfer agent and a pH-sensitive diisopropylaminoethyl methacrylate (DPA) monomer, we generated PTEGMA-b-PDPA diblock copolymer nano-objects under conditions both below and above the LCST of PTEGMA. By systematically varying the length of the PDPA block, we accessed a wide array of morphologies-including micelles, worms, vesicles, and intricate "octopus"-like structures-simply by adjusting the polymerization temperature and hydrophobic block length. These nanostructures displayed clear dual responsiveness: thermally triggered aggregation around ∼40 °C and reversible disassembly in acidic environments. Our findings highlight the precise morphological control achievable through aqueous RAFT-PISA and underscore its potential for designing smart nanomaterials tailored for biomedical and stimuli-responsive applications.

Zobrazit více v PubMed

Charleux B. Delaittre G. Rieger J. D'Agosto F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules. 2012;45(17):6753–6765. doi: 10.1021/ma300713f. DOI

Li S. Han G. Zhang W. Cross-Linking Approaches for Block Copolymer Nano-Assemblies via RAFT-Mediated Polymerization-Induced Self-Assembly. Polym. Chem. 2020;11(29):4681–4692. doi: 10.1039/D0PY00627K. DOI

Yeow J. Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017;4(7):1700137. doi: 10.1002/advs.201700137. PubMed DOI PMC

Audureau N. Coumes F. Guigner J.-M. Guibert C. Stoffelbach F. Rieger J. Dual Thermo- and PH-Responsive N -Cyanomethylacrylamide-Based Nano-Objects Prepared by RAFT-Mediated Aqueous Polymerization-Induced Self-Assembly. Macromolecules. 2022;55(24):10993–11005. doi: 10.1021/acs.macromol.2c01953. DOI

György C. Armes S. P. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew. Chemie Int. Ed. 2023;62(42):1–25. doi: 10.1002/anie.202308372. PubMed DOI PMC

Varlas S. Lawrenson S. B. Arkinstall L. A. O'Reilly R. K. Foster J. C. Self-Assembled Nanostructures from Amphiphilic Block Copolymers Prepared via Ring-Opening Metathesis Polymerization (ROMP) Prog. Polym. Sci. 2020;107:101278. doi: 10.1016/j.progpolymsci.2020.101278. DOI

Fan B. Liu Y. Wan J. Crawford S. Thang S. H. Polymerization-Induced Self-Assembly (PISA) and “Host–Guest” Complexation-Directed Polymer/Gold Nanocomposites. ACS Mater. Lett. 2020;2(5):492–498. doi: 10.1021/acsmaterialslett.0c00043. DOI

Mane S. R. Trending Methods Employed for Polymerization Induced Self-Assembly. New J. Chem. 2020;44(17):6690–6698. doi: 10.1039/C9NJ05638F. DOI

Liu C. Hong C.-Y. Pan C.-Y. Polymerization Techniques in Polymerization-Induced Self-Assembly (PISA) Polym. Chem. 2020;11(22):3673–3689. doi: 10.1039/D0PY00455C. DOI

Cornel E. J. Jiang J. Chen S. Du J. Principles and Characteristics of Polymerization-Induced Self-Assembly with Various Polymerization Techniques. CCS Chem. 2021;3(4):2104–2125. doi: 10.31635/ccschem.020.202000470. DOI

An N. Chen X. Yuan J. Non-Thermally Initiated RAFT Polymerization-Induced Self-Assembly. Polym. Chem. 2021;12(22):3220–3232. doi: 10.1039/D1PY00216C. DOI

Biais P. Colombani O. Bouteiller L. Stoffelbach F. Rieger J. Unravelling the Formation of BAB Block Copolymer Assemblies during PISA in Water. Polym. Chem. 2020;11(28):4568–4578. doi: 10.1039/D0PY00422G. DOI

Gonzato C. Semsarilar M. Jones E. R. Li F. Krooshof G. J. P. Wyman P. Mykhaylyk O. O. Tuinier R. Armes S. P. Rational Synthesis of Low-Polydispersity Block Copolymer Vesicles in Concentrated Solution via Polymerization-Induced Self-Assembly. J. Am. Chem. Soc. 2014;136(31):11100–11106. doi: 10.1021/ja505406s. PubMed DOI

Warren N. J. Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014;136(29):10174–10185. doi: 10.1021/ja502843f. PubMed DOI PMC

Khan H. Cao M. Duan W. Ying T. Zhang W. Synthesis of Diblock Copolymer Nano-Assemblies: Comparison between PISA and Micellization. Polymer. 2018;150:204–213. doi: 10.1016/j.polymer.2018.07.048. DOI

Gu Q. Li H. Cornel E. J. Du J. New Driving Forces and Recent Advances in Polymerization-Induced Self-Assembly. Cell Reports Phys. Sci. 2023;4(7):101495. doi: 10.1016/j.xcrp.2023.101495. DOI

Eades C. B. Stevens K. C. Cabrera D. E. Vereb M. K. Lott M. E. Bowman J. I. Sumerlin B. S. Ultra-High Molecular Weight Polymer Synthesis via Aqueous Dispersion Polymerization. Chem. Sci. 2025;16(13):5573–5578. doi: 10.1039/D5SC00589B. PubMed DOI PMC

Patel A. Maitland G. L. Liarou E. Topham P. D. Derry M. J. Transparent Diblock Copolymer Nanoparticle Dispersions via Efficient RAFT Emulsion Polymerisation in Ionic Liquid. Polym. Chem. 2025;16(23):2767–2777. doi: 10.1039/D5PY00076A. DOI

Cheng S. Wang J. Li C. He S. Liu Y. Wang Y. Dong J. Li X. Morphology and Emulsification of Poly(N-2-(Methacryloyloxy)Ethyl Pyrrolidone)-b-Poly(Benzyl Methacrylate) Assemblies by Polymerization-Induced Self-Assembly. ACS Omega. 2024;9(35):36917–36925. doi: 10.1021/acsomega.3c09315. PubMed DOI PMC

Hunter S. J. Armes S. P. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Langmuir. 2020;36(51):15463–15484. doi: 10.1021/acs.langmuir.0c02595. PubMed DOI PMC

Cunningham V. J. Alswieleh A. M. Thompson K. L. Williams M. Leggett G. J. Armes S. P. Musa O. M. Poly(Glycerol Monomethacrylate)–Poly(Benzyl Methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion Polymerization: Synthesis, Characterization, and Interfacial Activity. Macromolecules. 2014;47(16):5613–5623. doi: 10.1021/ma501140h. DOI

Neal T. J. Penfold N. J. W. Armes S. P. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew. Chemie Int. Ed. 2022;61(33):1–10. doi: 10.1002/anie.202207376. PubMed DOI PMC

Chan D. H. H. Cockram A. A. Gibson R. R. Kynaston E. L. Lindsay C. Taylor P. Armes S. P. RAFT Aqueous Emulsion Polymerization of Methyl Methacrylate: Observation of Unexpected Constraints When Employing a Non-Ionic Steric Stabilizer Block. Polym. Chem. 2021;12(40):5760–5769. doi: 10.1039/D1PY01008E. DOI

Lukáš Petrova S. Sincari V. Konefał R. Pavlova E. Hrubý M. Pokorný V. Jäger E. Microwave Irradiation-Assisted Reversible Addition–Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of PH-Responsive Diblock Copolymer Nanoparticles. ACS Omega. 2022;7(47):42711–42722. doi: 10.1021/acsomega.2c04036. PubMed DOI PMC

GIL E. HUDSON S. Stimuli-Reponsive Polymers and Their Bioconjugates. Prog. Polym. Sci. 2004;29(12):1173–1222. doi: 10.1016/j.progpolymsci.2004.08.003. DOI

Jochum F. D. Theato P. Temperature- and Light-Responsive Smart Polymer Materials. Chem. Soc. Rev. 2013;42(17):7468–7483. doi: 10.1039/C2CS35191A. PubMed DOI

Jochum F. D. zur Borg L. Roth P. J. Theato P. Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups. Macromolecules. 2009;42(20):7854–7862. doi: 10.1021/ma901295f. DOI

Bagheri A. Boyer C. Lim M. Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019;40(2):1–7. doi: 10.1002/marc.201800510. PubMed DOI

Boyer C. A. Miyake G. M. Polymers and Light. Macromol. Rapid Commun. 2017;38(13):1–2. doi: 10.1002/marc.201700327. PubMed DOI

Wang X. Zhou J. Lv X. Zhang B. An Z. Temperature-Induced Morphological Transitions of Poly(Dimethylacrylamide)–Poly(Diacetone Acrylamide) Block Copolymer Lamellae Synthesized via Aqueous Polymerization-Induced Self-Assembly. Macromolecules. 2017;50(18):7222–7232. doi: 10.1021/acs.macromol.7b01644. DOI

Kessel S. Truong N. P. Jia Z. Monteiro M. J. Aqueous Reversible Addition-fragmentation Chain Transfer Dispersion Polymerization of Thermoresponsive Diblock Copolymer Assemblies: Temperature Directed Morphology Transformations. J. Polym. Sci. Part A Polym. Chem. 2012;50(23):4879–4887. doi: 10.1002/pola.26313. DOI

Figg C. A. Simula A. Gebre K. A. Tucker B. S. Haddleton D. M. Sumerlin B. S. Polymerization-Induced Thermal Self-Assembly (PITSA) Chem. Sci. 2015;6(2):1230–1236. doi: 10.1039/C4SC03334E. PubMed DOI PMC

Zhou D. Dong S. Kuchel R. P. Perrier S. Zetterlund P. B. Polymerization Induced Self-Assembly: Tuning of Morphology Using Ionic Strength and PH. Polym. Chem. 2017;8(20):3082–3089. doi: 10.1039/C7PY00552K. DOI

Aflori M. Smart Nanomaterials for Biomedical Applications—A Review. Nanomaterials. 2021;11(2):396. doi: 10.3390/nano11020396. PubMed DOI PMC

Guleria S. Chopra L. Manikanika. Temperature Responsive Hydrogels for Biomedical Applications. Mater. Today Proc. 2023;92:356–363. doi: 10.1016/j.matpr.2023.05.167. DOI

Roy D. Brooks W. L. A. Sumerlin B. S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013;42(17):7214. doi: 10.1039/c3cs35499g. PubMed DOI

Hoffman A. S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Deliv. Rev. 2013;65(1):10–16. doi: 10.1016/j.addr.2012.11.004. PubMed DOI

Chen Y. Gao Y. da Silva L. P. Pirraco R. P. Ma M. Yang L. Reis R. L. Chen J. A Thermo-/PH-Responsive Hydrogel (PNIPAM-PDMA-PAA) with Diverse Nanostructures and Gel Behaviors as a General Drug Carrier for Drug Release. Polym. Chem. 2018;9(29):4063–4072. doi: 10.1039/C8PY00838H. DOI

Kalhapure R. S. Renukuntla J. Thermo- and PH Dual Responsive Polymeric Micelles and Nanoparticles. Chem. Biol. Interact. 2018;295:20–37. doi: 10.1016/j.cbi.2018.07.016. PubMed DOI

Hiruta Y. Kanda Y. Katsuyama N. Kanazawa H. Dual Temperature- and PH-Responsive Polymeric Micelle for Selective and Efficient Two-Step Doxorubicin Delivery. RSC Adv. 2017;7(47):29540–29549. doi: 10.1039/C7RA03579A. DOI

Wang S. Liu H. Wu D. Wang X. Temperature and PH Dual-Stimuli-Responsive Phase-Change Microcapsules for Multipurpose Applications in Smart Drug Delivery. J. Colloid Interface Sci. 2021;583:470–486. doi: 10.1016/j.jcis.2020.09.073. PubMed DOI

Lovett J. R. Warren N. J. Armes S. P. Smallridge M. J. Cracknell R. B. Order–Order Morphological Transitions for Dual Stimulus Responsive Diblock Copolymer Vesicles. Macromolecules. 2016;49(3):1016–1025. doi: 10.1021/acs.macromol.5b02470. PubMed DOI PMC

Lukáš Petrova S. Vragović M. Pavlova E. Černochová Z. Jäger A. Jäger E. Konefał R. Smart Poly(Lactide)-b-Poly(Triethylene Glycol Methyl Ether Methacrylate) (PLA-b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics. 2023;15(4):1191. doi: 10.3390/pharmaceutics15041191. PubMed DOI PMC

Giacomelli F. C. Stepánek P. Giacomelli C. Schmidt V. Jäger E. Jäger A. Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter. 2011;7(19):9316. doi: 10.1039/C1SM05992K. https://dx.doi.org/10.1039/c1sm05992k DOI

Jäger E. Jäger A. Etrych T. Giacomelli F. C. Chytil P. Jigounov A. Putaux J.-L. Říhová B. Ulbrich K. Štěpánek P. Self-Assembly of Biodegradable Copolyester and Reactive HPMA-Based Polymers into Nanoparticles as an Alternative Stealth Drug Delivery System. Soft Matter. 2012;8(37):9563. doi: 10.1039/C2SM26150B. https://dx.doi.org/10.1039/c2sm26150b DOI

Danial M. Telwatte S. Tyssen D. Cosson S. Tachedjian G. Moad G. Postma A. Combination Anti-HIV Therapy via Tandem Release of Prodrugs from Macromolecular Carriers. Polym. Chem. 2016;7(48):7477–7487. doi: 10.1039/C6PY01882C. DOI

Shibata I. Sugawara-Narutaki A. Takahashi R. Polymerization-Induced Self-Assembly Enables Access to Diverse Highly Ordered Structures through Kinetic and Thermodynamic Pathways. Chem. Sci. 2025;16(18):7921–7928. doi: 10.1039/D5SC01703C. PubMed DOI PMC

Zhao X. Sun C. Xiong F. Wang T. Li S. Huo F. Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. Research. 2023;6:1–25. doi: 10.34133/research.0113. PubMed DOI PMC

Černoch P. Jager A. Černochová Z. Sincari V. Albuquerque L. J. C. Konefal R. Pavlova E. Giacomelli F. C. Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)- b -Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021;12(19):2868–2880. doi: 10.1039/D1PY00141H. DOI

Albuquerque L. J. C. Sincari V. Jäger A. Konefał R. Pánek J. Černoch P. Pavlova E. Štěpánek P. Giacomelli F. C. Jäger E. Microfluidic-Assisted Engineering of Quasi-Monodisperse PH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir. 2019;35(25):8363–8372. doi: 10.1021/acs.langmuir.9b01009. PubMed DOI

Debrie C. Coudert N. Guigner J.-M. Coumes F. Guibert C. Harrisson S. Stoffelbach F. Colombani O. Rieger J. Effect of PH on the Incorporation of Acrylic Acid Units in the Core of Polymer Nanoparticles Prepared by PISA and on Their Morphology. Polym. Chem. 2024;15(24):2462–2475. doi: 10.1039/D4PY00373J. DOI

Buckinx A.-L. Rubens M. Cameron N. R. Bakkali-Hassani C. Sokolova A. Junkers T. The Effects of Molecular Weight Dispersity on Block Copolymer Self-Assembly. Polym. Chem. 2022;13(23):3444–3450. doi: 10.1039/D2PY00318J. DOI

Gentekos D. T. Fors B. P. Molecular Weight Distribution Shape as a Versatile Approach to Tailoring Block Copolymer Phase Behavior. ACS Macro Lett. 2018;7(6):677–682. doi: 10.1021/acsmacrolett.8b00295. PubMed DOI

Tobita H. Zhu S. Distribution of Molecular Weight and Composition in Diblock Copolymers. e-Polymers. 2003;3(1):1–17. doi: 10.1515/epoly.2003.3.1.324. DOI

Israelachvili J. N. Mitchell D. J. Ninham B. W. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem. Soc. Faraday Trans. 1976;2:72–1525. doi: 10.1039/f29767201525. DOI

Blanazs A. Armes S. P. Ryan A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009;30(4–5):267–277. doi: 10.1002/marc.200800713. PubMed DOI

Blanazs A. Ryan A. J. Armes S. P. Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration. Macromolecules. 2012;45(12):5099–5107. doi: 10.1021/ma301059r. DOI

Derry M. J. Fielding L. A. Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016;52:1–18. doi: 10.1016/j.progpolymsci.2015.10.002. DOI

Blanazs A. Madsen J. Battaglia G. Ryan A. J. Armes S. P. Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles? J. Am. Chem. Soc. 2011;133(41):16581–16587. doi: 10.1021/ja206301a. PubMed DOI

Derry M. J. Fielding L. A. Warren N. J. Mable C. J. Smith A. J. Mykhaylyk O. O. Armes S. P. In Situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilized Diblock Copolymer Nanoparticles Formed during Polymerization-Induced Self-Assembly in Non-Polar Media. Chem. Sci. 2016;7(8):5078–5090. doi: 10.1039/C6SC01243D. PubMed DOI PMC

Rice S. A. Small Angle Scattering of X-Rays. A. Guinier and G. Fournet. Translated by C. B. Wilson and with a Bibliographical Appendix by K. L. Yudowitch. Wiley, New York, 1955. 268 Pp. $7.50. J. Polym. Sci. 1956;19(93):594. doi: 10.1002/pol.1956.120199326. DOI

Pedersen J. S. Schurtenberger P. Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. Macromolecules. 1996;29(23):7602–7612. doi: 10.1021/ma9607630. DOI

Manfredini N. Tomasoni M. Sponchioni M. Moscatelli D. Influence of the Polymer Microstructure over the Phase Separation of Thermo-Responsive Nanoparticles. Polymers. 2021;13(7):1032. doi: 10.3390/polym13071032. PubMed DOI PMC

Audureau N. Coumes F. Veith C. Guibert C. Guigner J.-M. Stoffelbach F. Rieger J. Synthesis and Characterization of Temperature-Responsive N-Cyanomethylacrylamide-Containing Diblock Copolymer Assemblies in Water. Polymers. 2021;13(24):4424. doi: 10.3390/polym13244424. PubMed DOI PMC

Reimhult E. Schroffenegger M. Lassenberger A. Design Principles for Thermoresponsive Core–Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology. Langmuir. 2019;35(22):7092–7104. doi: 10.1021/acs.langmuir.9b00665. PubMed DOI PMC

Bütün V. Armes S. Billingham N. Synthesis and Aqueous Solution Properties of Near-Monodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers. Polymer. 2001;42(14):5993–6008. doi: 10.1016/S0032-3861(01)00066-0. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...