Computer- and NMR-Aided Design of Small-Molecule Inhibitors of the Hub1 Protein
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
UMO-2015/17/N/ST5/01942
National Science Center
Marie Skłodowska-Curie Grant Agreement No. 675555
European Union's Framework Program for Research and Innovation Horizon 2020 (2014-2020)
PubMed
36500376
PubMed Central
PMC9738620
DOI
10.3390/molecules27238282
PII: molecules27238282
Knihovny.cz E-resources
- Keywords
- anti-cancer therapy, nuclear magnetic resonance, protein-peptide docking, protein-protein interactions, small-molecule inhibitors,
- MeSH
- Alternative Splicing * MeSH
- Humans MeSH
- Ligands MeSH
- Magnetic Resonance Spectroscopy MeSH
- Computers MeSH
- Spliceosomes * metabolism MeSH
- Ubiquitins genetics MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ligands MeSH
- Ubiquitins MeSH
By binding to the spliceosomal protein Snu66, the human ubiquitin-like protein Hub1 is a modulator of the spliceosome performance and facilitates alternative splicing. Small molecules that bind to Hub1 would be of interest to study the protein-protein interaction of Hub1/Snu66, which is linked to several human pathologies, such as hypercholesterolemia, premature aging, neurodegenerative diseases, and cancer. To identify small molecule ligands for Hub1, we used the interface analysis, peptide modeling of the Hub1/Snu66 interaction and the fragment-based NMR screening. Fragment-based NMR screening has not proven sufficient to unambiguously search for fragments that bind to the Hub1 protein. This was because the Snu66 binding pocket of Hub1 is occupied by pH-sensitive residues, making it difficult to distinguish between pH-induced NMR shifts and actual binding events. The NMR analyses were therefore verified experimentally by microscale thermophoresis and by NMR pH titration experiments. Our study found two small peptides that showed binding to Hub1. These peptides are the first small-molecule ligands reported to interact with the Hub1 protein.
See more in PubMed
Friedman J.S., Koop B.F., Raymond V., Walter M.A. Isolation of a Ubiquitin-like (UBL5) Gene from a Screen Identifying Highly Expressed and Conserved Iris Genes. Genomics. 2001;255:252–255. doi: 10.1006/geno.2000.6439. PubMed DOI
Hochstrasser M. Origin and Function of Ubiquitin-like Proteins. Nature. 2009;458:422–429. doi: 10.1038/nature07958. PubMed DOI PMC
Jentsch S., Pyrowolakis G. Ubiquitin and Its Kin: How Close Are the Family Ties? Trends Cell Biol. 2000;10:335–342. doi: 10.1016/S0962-8924(00)01785-2. PubMed DOI
McNally T., Huang Q., Janis R.S., Liu Z., Olejniczak E.T., Reilly R.M. Structural Analysis of UBL5, a Novel Ubiquitin-like Modifier. Protein Sci. 2003;12:1562–1566. doi: 10.1110/ps.0382803. PubMed DOI PMC
Mishra S.K., Ammon T., Popowicz G.M., Krajewski M., Nagel R.J., Ares M., Holak T.A., Jentsch S. Role of the Ubiquitin-like Protein Hub1 in Splice-Site Usage and Alternative Splicing. Nature. 2011;474:173–180. doi: 10.1038/nature10143. PubMed DOI PMC
Ammon T., Mishra S.K., Kowalska K., Popowicz G.M., Holak T.A., Jentsch S. The Conserved Ubiquitin-like Protein Hub 1 Plays a Critical Role in Splicing in Human Cells. J. Mol. Cell Biol. 2014;6:312–323. doi: 10.1093/jmcb/mju026. PubMed DOI PMC
Masopust M., Weisz F., Bartenschlager H., Knoll A., Vykoukalova Z., Geldermann H., Cepica S. Porcine Ubiquitin-like 5 (UBL5) Gene: Genomic Organization, Polymorphisms, MRNA Cloning, Splicing Variants and Association Study. Mol. Biol. Rep. 2014;41:2353–2362. doi: 10.1007/s11033-014-3089-6. PubMed DOI
Bedford L., Lowe J., Dick L.R., Mayer R.J., Brownell J.E. Ubiquitin-like Protein Conjugation and the Ubiquiting-Proteasome System as Drug Targets. Nat. Rev. Drug Discov. 2011;10:29–46. doi: 10.1038/nrd3321. PubMed DOI PMC
Wells J.A., McClendon C.L. Reaching for High-Hanging Fruit in Drug Discovery at Protein-Protein Interfaces. Nature. 2007;450:1001–1009. doi: 10.1038/nature06526. PubMed DOI
Jones S., Thornton J.M. Review Principles of Protein-Protein Interactions. Proc. Natl. Acad. Sci. USA. 1996;93:13–20. doi: 10.1073/pnas.93.1.13. PubMed DOI PMC
Hummel G., Reineke U., Reimer U. Translating Peptides into Small Molecules. Mol. Biosyst. 2006;2:499–508. doi: 10.1039/b611791k. PubMed DOI
de Esch I.J.P., Erlanson D.A., Jahnke W., Johnson C.N., Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J. Med. Chem. 2022;65:84–99. doi: 10.1021/acs.jmedchem.1c01803. PubMed DOI PMC
Li Y., Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules. 2017;22:1399. doi: 10.3390/molecules22091399. PubMed DOI PMC
Musielak B., Janczyk W., Rodriguez I., Plewka J., Sala D., Magiera-Mularz K., Holak T. Competition NMR for Detection of Hit/Lead Inhibitors of Protein-Protein Interactions. Molecules. 2020;25:3017. doi: 10.3390/molecules25133017. PubMed DOI PMC
Perry E., Mills J.J., Zhao B., Wang F., Sun Q., Christov P.P., Tarr J.C., Rietz T.A., Olejniczak E.T., Lee T., et al. Fragment-Based Screening of Programmed Death Ligand 1 (PD-L1) Bioorg. Med. Chem. Lett. 2019;29:786–790. doi: 10.1016/j.bmcl.2019.01.028. PubMed DOI PMC
Krissinel E., Henrick K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI
Antes I. DynaDock: A Now Molecular Dynamics-Based Algorithm for Protein-Peptide Docking Including Receptor Flexibility. Proteins. 2010;78:1084–1104. doi: 10.1002/prot.22629. PubMed DOI
Dominguez C., Boelens R., Bonvin A.M.J.J. HADDOCK: A Protein-Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003;125:1731–1737. doi: 10.1021/ja026939x. PubMed DOI
Alam N., Goldstein O., Xia B., Porter K.A., Kozakov D., Schueler-Furman O. High-Resolution Global Peptide-Protein Docking Using Fragments-Based PIPER-FlexPepDock. PLoS Comput. Biol. 2017;13:e1005905. doi: 10.1371/journal.pcbi.1005905. PubMed DOI PMC
Kurcinski M., Pawel Ciemny M., Oleniecki T., Kuriata A., Badaczewska-Dawid A.E., Kolinski A., Kmiecik S. CABS-Dock Standalone: A Toolbox for Flexible Protein-Peptide Docking. Bioinformatics. 2019;35:4170–4172. doi: 10.1093/bioinformatics/btz185. PubMed DOI PMC
Porter K.A., Xia B., Beglov D., Bohnuud T., Alam N., Schueler-Furman O., Kozakov D. ClusPro PeptiDock: Efficient Global Docking of Peptide Recognition Motifs Using FFT. Bioinformatics. 2017;33:3299–3301. doi: 10.1093/bioinformatics/btx216. PubMed DOI PMC
Lee H., Heo L., Lee M.S., Seok C. GalaxyPepDock: A Protein-Peptide Docking Tool Based on Interaction Similarity and Energy Optimization. Nucl. Acids. Res. 2015;43:W431–W435. doi: 10.1093/nar/gkv495. PubMed DOI PMC
Obarska-Kosinska A., Iacoangeli A., Lepore R., Tramontano A. PepComposer: Computational Design of Peptides Binding to a given Protein Surface. Nucl. Acids. Res. 2016;44:W522–W528. doi: 10.1093/nar/gkw366. PubMed DOI PMC
Raveh B., London N., Schueler-Furman O. Sub-Angstrom Modeling of Complexes between Flexible Peptides and Globular Proteins. Proteins. 2010;78:2029–2040. doi: 10.1002/prot.22716. PubMed DOI
Lavi A., Ngan C.H., Movshovitz-Attias D., Bohnuud T., Yueh C., Beglov D., Schueler-Furman O., Kozakov D. Detection of Peptide-Binding Sites on Protein Surfaces: The First Step toward the Modeling and Targeting of Peptide-Mediated Interactions. Protein. 2013;81:2096–2105. doi: 10.1002/prot.24422. PubMed DOI PMC
Hajduk P.J., Greer J. A Decade of Fragment-Based Drug Design: Strategic Advances and Lessons Learned. Nat. Rev. Drug Discov. 2007;6:211–219. doi: 10.1038/nrd2220. PubMed DOI
Mashalidis E.H., Sledz P., Lang S., Abell C. A Three-Stage Biophysical Screening Cascade for Fragment-Based Drug Discovery. Nat. Protoc. 2013;8:2309–2324. doi: 10.1038/nprot.2013.130. PubMed DOI
Fielding L. NMR Methods for the Determination of Protein-Ligand Dissociation Constants. Prog. Nucl. Magn. Reson. Spectrosc. 2007;51:219–242. doi: 10.1016/j.pnmrs.2007.04.001. DOI
Harner M.J., Frank A.O., Fesik S.W. Fragment-Based Drug Discovery Using NMR Spectroscopy. J. Biomol. NMR. 2013;56:65–75. doi: 10.1007/s10858-013-9740-z. PubMed DOI PMC
Williamson M.P. Using Chemical Shift Perturbation to Characterise Ligand Binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013;73:1–16. doi: 10.1016/j.pnmrs.2013.02.001. PubMed DOI
Babaoglu K., Shoichet B.K. Deconstructing Fragment-Based Inhibitor Discovery. Nat. Chem. Biol. 2006;2:720–723. doi: 10.1038/nchembio831. PubMed DOI
Dalvit C., Fogliatto G., Stewart A., Veronesi M., Stockman B. WaterLOGSY as a Method for Primary NMR Screening: Practical Aspects and Range of Applicability. J. Biomol. NMR. 2001;21:349–359. doi: 10.1023/A:1013302231549. PubMed DOI
Kitel R., Rodríguez I., del Corte X., Atmaj J., Żarnik M., Surmiak E., Muszak D., Magiera-Mularz K., Popowicz G.M., Holak T.A., et al. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem. Biol. 2022;17:2655–2663. doi: 10.1021/acschembio.2c00583. PubMed DOI PMC
Czisch M., Schleicher M., Horger S., Voelter W., Holak T.A. Conformation of Thymosin Β4 in Water Determined by NMR Spectroscopy. Eur. J. Biochem. 1993;218:335–344. doi: 10.1111/j.1432-1033.1993.tb18382.x. PubMed DOI
D’Silva L., Ozdowy P., Krajewski M., Rothweiler U., Singh M., Holak T.A. Monitoring the Effects of Antagonists on Protein-Protein Interactions with NMR Spectroscopy. J. Am. Chem. Soc. 2005;127:13220–13226. doi: 10.1021/ja052143x. PubMed DOI
Shuker S.B., Hajduk P.J., Meadows R.P., Fesik S.W. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science. 1996;274:1531–1534. doi: 10.1126/science.274.5292.1531. PubMed DOI
Kolinski A. Protein Modeling and Structure Prediction with a Reduced Representation. Acta Biochim. Pol. 2004;51:349–371. doi: 10.18388/abp.2004_3575. PubMed DOI
Kurcinski M., Blaszczyk M., Ciemny M.P., Kolinski A., Kmiecik S. A Protocol for CABS-Dock Protein-Peptide Docking Driven by Side-Chain Contact Information. Biomed. Eng. Online. 2017;16:73. doi: 10.1186/s12938-017-0363-6. PubMed DOI PMC
Badaczewska-Dawid A.E., Kmiecik S., Koliński M. Docking of Peptides to GPCRs Using a Combination of CABS-Dock with FlexPepDock Refinement. Brief. Bioinform. 2021;22:bbaa109. doi: 10.1093/bib/bbaa109. PubMed DOI PMC
Ciemny M.P., Kurcinski M., Blaszczyk M., Kolinski A., Kmiecik S. Modeling EphB4-EphrinB2 Protein-Protein Interaction Using Flexible Docking of a Short Linear Motif. Biomed. Eng. Online. 2017;16:71. doi: 10.1186/s12938-017-0362-7. PubMed DOI PMC
Kmiecik S., Gront D., Kolinski M., Wieteska L., Dawid A.E., Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016;116:7898–7936. doi: 10.1021/acs.chemrev.6b00163. PubMed DOI
Kabsch W., Sander C. Routine Follow up of Patients with Treated Pulmonary Tuberculosis. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI
Touw W.G., Baakman C., Black J., te Beek T.A.H., Krieger E., Joosten R.P., Vriend G. A Series of PDB-Related Databanks for Everyday Needs. Nucl. Acids Res. 2015;43:D364–D368. doi: 10.1093/nar/gku1028. PubMed DOI PMC
Piotto M., Saudek V., Sklenar V. Gradient-Tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions. J. Biomol. NMR. 1992;2:661–665. doi: 10.1007/BF02192855. PubMed DOI
Brutscher B., Schanda P. SOFAST-HMQC Experiments for Recording Two-Dimensional Heteronuclear Correlation Spectra of Proteins within a Few Seconds. J. Biomol. NMR. 2005;33:199–211. doi: 10.1007/s10858-005-4425-x. PubMed DOI