No evidence for persistent natural plague reservoirs in historical and modern Europe
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36508668
PubMed Central
PMC9907128
DOI
10.1073/pnas.2209816119
Knihovny.cz E-zdroje
- Klíčová slova
- Europe, Yersinia pestis, environmental conditions, natural plague reservoirs, rodent diversity,
- MeSH
- lidé MeSH
- mor * epidemiologie dějiny MeSH
- pandemie dějiny MeSH
- podnebí MeSH
- půda MeSH
- Yersinia pestis * MeSH
- zdroje nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- půda MeSH
Caused by Yersinia pestis, plague ravaged the world through three known pandemics: the First or the Justinianic (6th-8th century); the Second (beginning with the Black Death during c.1338-1353 and lasting until the 19th century); and the Third (which became global in 1894). It is debatable whether Y. pestis persisted in European wildlife reservoirs or was repeatedly introduced from outside Europe (as covered by European Union and the British Isles). Here, we analyze environmental data (soil characteristics and climate) from active Chinese plague reservoirs to assess whether such environmental conditions in Europe had ever supported "natural plague reservoirs". We have used new statistical methods which are validated through predicting the presence of modern plague reservoirs in the western United States. We find no support for persistent natural plague reservoirs in either historical or modern Europe. Two factors make Europe unfavorable for long-term plague reservoirs: 1) Soil texture and biochemistry and 2) low rodent diversity. By comparing rodent communities in Europe with those in China and the United States, we conclude that a lack of suitable host species might be the main reason for the absence of plague reservoirs in Europe today. These findings support the hypothesis that long-term plague reservoirs did not exist in Europe and therefore question the importance of wildlife rodent species as the primary plague hosts in Europe.
Department of Environmental and Prevention Sciences University of Ferrara Ferrara 44121 Italy
Department of Geography Faculty of Science Masaryk University Brno 611 37 Czech Republic
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Department of History University of Glasgow Glasgow G12 8QQ UK
Department of Soil and Water Sciences China Agricultural University Beijing 100193 China
Division of History and Politics University of Stirling Stirling FK9 4LJ UK
Forensic Soil Science Group James Hutton Institute Aberdeen AB15 8QH UK
Global Change Research Institute Czech Academy of Sciences Brno 603 00 Czech Republic
Institute of Healthy China Tsinghua University Beijing 100084 China
London School of Economics London WC2A 2AE UK
School of Biosciences University of Nottingham Loughborough Leics LE12 5RD UK
School of Geography University of Nottingham University Park Nottingham NG7 2RD UK
Swiss Federal Research Institute Birmensdorf 8903 Switzerland
Vanke School of Public Health Tsinghua University Beijing 100084 China
Zobrazit více v PubMed
Mahmoudi A., et al. , Plague reservoir species throughout the world. Integr. Zool. 16, 820–833 (2021). PubMed
Schmid B. V., et al. , Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc. Natl. Acad. Sci. U.S.A. 112, 3020–3025 (2015). PubMed PMC
Stenseth N. C., et al. , Plague: Past, present, and future. PLoS Med. 5, e3 (2008). PubMed PMC
Haensch S., et al. , Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog. 6, e1001134 (2010). PubMed PMC
Bos K. I., et al. , A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011). PubMed PMC
Harbeck M., et al. , Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into justinianic plague. PLoS Pathog. 9, e1003349 (2013). PubMed PMC
Wagner D. M., et al. , Yersinia pestis and the plague of Justinian 541–543 AD: A genomic analysis. Lancet Infect. Dis. 14, 319–326 (2014). PubMed
Bramanti B., Dean K. R., Walloe L., Stenseth N. C., The third plague pandemic in Europe. Proc. R. Soc. B Biol. Sci. 286, 8 (2019). PubMed PMC
Xu L., et al. , Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic. Proc. Natl. Acad. Sci. U.S.A. 116, 11833–11838 (2019). PubMed PMC
Linné Kausrud K., et al. , Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks. Proc. R. Soc. B Biol. Sci. 274, 1963–1969 (2007). PubMed PMC
Bramanti B., Wu Y. R., Yang R. F., Cui Y. J., Stenseth N. C., Assessing the origins of the European plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc. Natl. Acad. Sci. U.S.A. 118, e2101940118 (2021). PubMed PMC
Barbieri R., Origin, transmission, and evolution of plague over 400 y in Europe. Proc. Natl. Acad. Sci. U.S.A. 118, e2114241118 (2021). PubMed PMC
Slavin P., Reply: Out of the West — and neither East, nor North, nor South. Past & Present 256, 325–360 (2022).
Slavin P., Out of the west: Formation of a permanent plague reservoir in South-Central Germany (1349–1356) and its implications. Past & Present 252, 3–51 (2021).
Carmichael A. G., “Plague persistence in western Europe: A hypothesis” in Pandemic Disease in the Medieval World: Rethinking the Black Death, Green M. H., Symes C., Eds. (ARC, Amsterdam University Press, 2014), pp. 157–192, 10.1515/9781942401018-009. DOI
Pribyl K., Farming, Famine and Plague: The Impact of Climate in Late Medieval England (Springer International Publishing, 2017), 10.1007/978-3-319-55953-7. DOI
Harper K., The Fate of Rome: Climate, Disease, and the End of an Empire (Princeton University Press, 2017), 10.1515/9781400888917. DOI
Panzac D., La peste dans l'Empire ottoman (1700-1850). Collection Turcica (1985).
Black J., Black D., Plague in east Suffolk 1906–1918. J. R. Soc. Med. 93, 540–543 (2000). PubMed PMC
Xia Y. C., Tong H., Li W. K., Zhu L. X., An adaptive estimation of dimension reduction space. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 363–410 (2002).
Kosoy M., Biggins D., Plague and trace metals in natural systems. Int. J. Environ. Res. Public Health 19, 9979 (2022). PubMed PMC
Liu Y. P., Tan J. A., Shen E. L., The Atlas of Plague and Its Environment in the People’s Republic of China (Science Press, Beijing, 2000).
Pauling C. D., Finke D. L., Anderson D. M., Interrelationship of soil moisture and temperature to sylvatic plague cycle among prairie dogs in the Western United States. Integr. Zool. 16, 852–867 (2021). PubMed
Carlson C. J., Bevins S. N., Schmid B. V., Plague risk in the western United States over seven decades of environmental change. Glob. Change Biol. 28, 1–17 (2021). PubMed PMC
Malek M. A., et al. , Yersinia pestis halotolerance illuminates plague reservoirs. Sci Rep. 7, 40022 (2017). PubMed PMC
Barbieri R., Texier G., Keller C., Drancourt M., Soil salinity and aridity specify plague foci in the United States of America. Sci. Rep. 10, 6186 (2020). PubMed PMC
Mezentsev V. M., Rotshil’d E. V., Medzykhovskiĭ G. A., Grazhdanov A. K., The effect of trace elements on the infectious process in plague in an experiment. Microbiol. Epidemiol. Immunobiol. 41–45, (2000). PubMed
Angelova V. R., Ivanova R. V., Todorov J. M., Ivanov K. I., Lead, cadmium, zinc, and copper bioavailability in the soil-plant-animal system in a polluted area. Sci. World J. 10, 318203 (2010). PubMed PMC
Shen X. Y., Chi Y. K., Xiong K. N., The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility. PLoS One 14, e0207423 (2019). PubMed PMC
Ge X. P., et al. , Evaluation of pasture allowance of manganese for ruminants. Environ. Sci. Pollut. Res. 28, 56906–56914 (2021). PubMed
John B. H., et al. , “Selected soil properties for prediction of plague vectors and reservoirs in Mavumo area, Lushoto District, Tanzania” in Second RUFORUM Biennial Meeting (Entebbe, Uganda, 2010), pp. 1199–1202.
Eroshenko G. A., et al. , Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan. PLoS One 12, e0187230 (2017). PubMed PMC
Eroshenko G. A., et al. , Natural mega-focus of Yersinia pestis main subspecies, antique biovar, phylogenetic Line 4. ANT in Gorny Altai. Probl. Particularly Dangerous Infect. 2, 49–56 (2018).
Xu X. Q., et al. , Genetic diversity and spatial-temporal distribution of Yersinia pestis in Qinghai Plateau, China. Plos Neglect. Trop. Dis. 12, e0006579 (2018). PubMed PMC
Wang S. L., Hou F. J., Burrow characteristics and ecological significance of Marmota himalayana in the northeastern Qinghai-Tibetan Plateau. Ecol. Evol. 11, 9100–9109 (2021). PubMed PMC
Winters A. M., et al. , Spatial risk models for human plague in the West Nile region of Uganda. Am. J. Trop. Med. Hyg. 80, 1014–1022 (2009). PubMed
Andrianaivoarimanana V., et al. , Understanding the persistence of plague foci in Madagascar. Plos Neglect. Trop. Dis. 7, e2382 (2013). PubMed PMC
Laudisoit A., et al. , Plague and the human flea, Tanzania. Emerg. Infect. Dis 13, 687–693 (2007). PubMed PMC
Neerinckx S., et al. , Predicting potential risk areas of human plague for the Western Usambara Mountains, Lushoto District, Tanzania. Am. J. Trop. Med. Hyg. 82, 492–500 (2010). PubMed PMC
Stenseth N. C., et al. , Plague dynamics are driven by climate variation. Proc. Natl. Acad. Sci. U.S.A. 103, 13110–13115 (2006). PubMed PMC
Xu L., et al. , Nonlinear effect of climate on plague during the third pandemic in China. Proc. Natl. Acad. Sci. U.S.A. 108, 10214–10219 (2011). PubMed PMC
Salkeld D. J., Salathé M., Stapp P., Jones J. H., Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance. Proc. Natl. Acad. Sci. U.S.A. 107, 14247 (2010). PubMed PMC
Maher S. P., Ellis C., Gage K. L., Enscore R. E., Peterson A. T., Range-wide determinants of Plague distribution in North America. Am. J. Trop. Med. Hyg. 83, 736–742 (2010). PubMed PMC
Fell H. G., et al. , Biotic factors limit the invasion of plague’s pathogen (Yersinia pestis) in novel geographical settings. Glob. Ecol. Biogeogr. 1–13 (2021).
Dean Katharine R., et al. , Human ectoparasites and the spread of plague in Europe during the Second Pandemic. Proc. Natl. Acad. Sci. U.S.A. 115, 1304–1309 (2018). PubMed PMC
Barbieri R., Drancourt M., Raoult D., Plague, camels, and lice. Proc. Natl. Acad. Sci. U.S.A. 116, 7620–7621 (2019). PubMed PMC
Stenseth N. C., Dean K. R., Bramanti B., The end of plague in Europe. Centaurus 1, 23–24 (2022).
Nelson C. A., et al. , Antimicrobial treatment of human plague: A systematic review of the literature on individual cases, 1937–2019. Clin. Infect. Dis. 70, S3–S10 (2020). PubMed
Varlik N., “New science and old sources: Why the Ottoman experience of plague matters” in Pandemic Disease in the Medieval World: Rethinking the Black Death, Monica H. G.Carol S., Eds. (ARC, Amsterdam University Press, 2015), pp. 193–228, 10.1515/9781942401018-010. DOI
Spyrou M. A., et al. , The source of the Black Death in fourteenth-century central Eurasia. Nature 606, 718–724 (2022). PubMed PMC
Bramanti B., Stenseth N. C., Walløe L., Lei X., “Plague: A disease which changed the path of human civilization” in Yersinia pestis: Retrospective and Perspective, Yang R., Anisimov A., Eds. (Springer, Netherlands, Dordrecht, 2016), pp. 1–26. PubMed
Namouchi A., Integrative approach using Yersinia pestis genomes to revisit the historical landscape of plague during the medieval period. Proc. Natl. Acad. Sci. U.S.A., 115, E11790–E11797 (2018). PubMed PMC
Guellil M., et al. , A genomic and historical synthesis of plague in 18th century Eurasia. 117, 28328–28335 (2020). PubMed PMC
Dean K. R., Krauer F., Schmid B. V., Epidemiology of a bubonic plague outbreak in Glasgow, Scotland in 1900. R. Soc. Open Sci., 6 181695 (2019). PubMed PMC
Cong X. B., Ju C., Human Plague in China (People’s Medical Publishing House, Beijing, 2018).
Holt A. C., Salkeld D. J., Fritz C. L., Tucker J. R., Gong P., Spatial analysis of plague in California: Niche modeling predictions of the current distribution and potential response to climate change. Int. J. Health Geogr. 8, 38 (2009). PubMed PMC
Bevins S. N., Baroch J. A., Nolte D. L., Zhang M., He H. X., Yersinia pestis: Examining wildlife plague surveillance in China and the USA. Integr. Zool. 7, 99–109 (2012). PubMed
National Environmental Protection Agency of the People's Republic of China, The Atlas of Soil Environmental Background Value in People’s Republic of China (China Environmental Science Press, Beijing, 1994).
Smith D. B., Federico S., Woodruff L. G., Cannon W. F., Ellefsen K. J., “Geochemical and mineralogical maps, with interpretation, for soils of the conterminous United States: U.S” in Geological Survey Scientific Investigations Report 2017–5118, (Science Publishing Network, Denver, 2019).
Salminen R., Geochemical atlas of Europe: Background information, methodology and maps, Geochemical Atlas of Europe (Geological Survey of Finland, Espoo, 2005).
Hengl T., et al. , SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017). PubMed PMC
Fick S. E., Hijmans R. J., WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Danielson J. J., Gesch D. B., Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073 (2011).
IUCN, The IUCN Red List of Threatened Species. https://www.iucnredlist.org.
Li B., Sufficient dimension reduction: Methods and applications with R (CRC Press, Boca Raton, 2018), 10.1515/9781942401018-009. DOI
Antoniadis A., Lambert-Lacroix S., Leblanc F., Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19, 563–570 (2003). PubMed
Cook R. D., Lee H., Dimension reduction in binary response regression. J. Am. Stat. Assoc. 94, 1187–1200 (1999).
Büntgen U., et al. , Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia 64, 125757 (2020).
Büntgen U., et al. , Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196 (2021).
Reply to Alfani: Reconstructing past plague ecology to understand human history