A New Class of Single-Material, Non-Reciprocal Microactuators
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Dagmar Prochazkova UCT
A1_FCHI_2022_006
UCT
CEP - Centrální evidence projektů
Leverhulme Trust
PubMed
36515359
DOI
10.1002/marc.202200842
Knihovny.cz E-zdroje
- Klíčová slova
- asymmetry, hydrogels, in-plane anisotropy, micro-actuators, non-reciprocity, soft robots,
- MeSH
- anizotropie MeSH
- hydrogely * MeSH
- poréznost MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogely * MeSH
A crucial component in designing soft actuating structures with controllable shape changes is programming internal, mismatching stresses. In this work, a new paradigm for achieving anisotropic dynamics between isotropic end-states-yielding a non-reciprocal shrinking/swelling response over a full actuation cycle-in a microscale actuator made of a single material, purely through microscale design is demonstrated. Anisotropic dynamics is achieved by incorporating micro-sized pores into certain segments of the structures; by arranging porous and non-porous segments (specifically, struts) into a 2D hexagonally-shaped microscopic poly(N-isopropyl acrylamide) hydrogel particle, the rate of isotropic shrinking/swelling in the structure is locally modulated, generating global anisotropic, non-reciprocal, dynamics. A simple mathematical model is introduced that reveals the physics that underlies these dynamics. This design has the potential to be used as a foundational tool for inducing non-reciprocal actuation cycles with a single material structure, and enables new possibilities in producing customized soft actuators and modular anisotropic metamaterials for a range of real-world applications, such as artificial cilia.
Zobrazit více v PubMed
S. Nocentini, C. Parmeggiani, D. Martella, D. S. Wiersma, Adv. Opt. Mater. 2018, 6, 1800207.
L. Hines, K. Petersen, G. Z. Lum, M. Sitti, Adv. Mater. 2017, 29, 13.
M. C. Koetting, J. T. Peters, S. D. Steichen, N. A. Peppas, Mater. Sci. Eng., R 2015, 93, 1.
L. Ionov, Mater. Today 2014, 17, 494.
J. F. Mano, Adv. Eng. Mater. 2008, 10, 515.
Y. Zhang, S. Xie, D. Zhang, B. Ren, Y. Liu, L. Tang, Q. Chen, J. Yang, J. Wu, J. Tang, J. Zheng, Eng. Sci. 2019, 6, 1.
H. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, X. Zhao, Nat. Commun. 2017, 8, 14230.
M. E. Harmon, M. Tang, C. W. Frank, Polymer 2003, 44, 4547.
S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, J. L. West, Adv. Mater. 2005, 17, 1366.
E. Lee, H. Lee, S. I. Yoo, J. Yoon, ACS Appl. Mater. Interfaces 2014, 6, 16949.
A. Nishiguchi, A. Mourran, H. Zhang, M. Möller, Adv. Sci. 2018, 5, 1700038.
Q. L. Zhu, C. Du, Y. Dai, M. Daab, M. Matejdes, J. Breu, W. Hong, Q. Zheng, Z. L. Wu, Nat. Commun. 2020, 11, 5166.
S. Maeda, Y. Hara, T. Sakai, R. Yoshida, S. Hashimoto, Adv. Mater. 2007, 19, 3480.
J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Science 2012, 335, 1201.
Q. L. Zhu, C. F. Dai, D. Wagner, O. Khoruzhenko, W. Hong, J. Breu, Q. Zheng, Z. L. Wu, Adv. Sci. 2021, 8, 2102353.
L. Ionov, Soft. Matter. 2011, 7, 6786.
J. C. Breger, C. Yoon, R. Xiao, H. R. Kwag, M. O. Wang, J. P. Fisher, T. D. Nguyen, D. H. Gracias, ACS Appl. Mater. Interfaces 2015, 7, 3398.
C. N. Zhu, C. Y. Li, H. Wang, W. Hong, F. Huang, Q. Zheng, Z. L. Wu, Adv. Mater. 2021, 33, 2008057.
Y. Ouyang, G. Huang, J. Cui, H. Zhu, G. Yan, Y. Mei, Chem. Mater. 2022, 34, 9307.
Z. L. Wu, M. Moshe, J. Greener, H. Therien-Aubin, Z. Nie, E. Sharon, E. Kumacheva, Nat. Commun. 2013, 4, 1586.
D. Jiao, Q. L. Zhu, C. Y. Li, Q. Zheng, Z. L. Wu, Acc. Chem. Res. 2022, 55, 1533.
E. M. Purcell, Am. J. Phys. 1977, 45, 3.
S. Palagi, P. Fischer, Nat. Rev. Mater. 2018, 3, 113.
D. J. Laser, J. G. Santiago, J. Micromech. Microeng. 2004, 14, 6.
Z. Zhu, E. Senses, P. Akcora, S. A. Sukhishvili, ACS Nano 2012, 6, 3152.
W. Wang, J. Y. Lee, H. Rodrigue, S. H. Song, W. S. Chu, S. H. Ahn, Bioinspiration Biomimetics 2014, 9, 4.
A. Mourran, H. Zhang, R. Vinokur, M. Möller, Adv. Mater. 2017, 29, 2.
M. Lahikainen, H. Zeng, A. Priimagi, Soft Matter. 2020, 16, 5951.
H. Zhang, L. Koens, E. Lauga, A. Mourran, M. Möller, Small 2019, 15, 46.
G. Huerta-Angeles, K. Hishchak, A. Strachota, B. Strachota, M. Šlouf, L. Matějka, Eur. Polym. J. 2014, 59, 341.
J. Chen, H. Park, K. Park, J. Biomed. Mater. Res. 1999, 44, 53.
T. Spratte, C. Arndt, I. Wacker, M. Hauck, R. Adelung, R. R. Schröder, F. Schütt, C. Selhuber-Unkel, Adv. Intell. Syst. 2022, 4, 2100081.
I. Rehor, C. Maslen, P. G. Moerman, B. G. Van Ravensteijn, R. Van Alst, J. Groenewold, H. B. Eral, W. K. Kegel, Soft Rob. 2021, 8, 10.
D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, P. S. Doyle, Lab Chip 2007, 7, 818.
J. Mueller, J. A. Lewis, K. Bertoldi, Adv. Funct. Mater. 2022, 32, 2105128.
H. G. Schild, Prog. Polym. Sci. 1992, 17, 163.
G. Liu, G. Zhang, J. Phys. Chem. B 2005, 109, 743.
H. Cheng, L. Shen, C. Wu, Macromolecules 2006, 39, 2325.
Y. Lu, K. Zhou, Y. Ding, G. Zhang, C. Wu, Phys. Chem. Chem. Phys. 2010, 12, 3188.
M. J. Junk, W. Li, A. D. Schlüter, G. Wegner, H. W. Spiess, A. Zhang, D. Hinderberger, J. Am. Chem. Soc. 2011, 133, 10832.
T. Tanaka, D. J. Fillmore, J. Chem. Phys. 1979, 70, 1214.
T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, J. Peetermans, Phys. Rev. Lett. 1985, 55, 2455.
M. Shibayama, K. Nagai, Macromolecules 1999, 32, 7461.
M. D. Butler, T. D. Montenegro-Johnson, J. Fluid Mech. 2022, 947, A11.
Y. N. V. Kodakkadan, C. Maslen, P. Cigler, F. Štěpánek, I. Rehor, J. Mater. Chem. B 2021, 9, 4718.
M. Doi, J. Phys. Soc. Jpn. 2009, 78, 052001.
T. Tanaka, L. O. Hocker, G. B. Benedek, J. Chem. Phys. 1973, 59, 5160.
J. J. Bowen, M. A. Rose, A. Konda, S. A. Morin, Angew. Chem. 2018, 130, 1250.
C. Coulais, A. Sabbadini, F. Vink, M. van Hecke, Nature 2018, 561, 512.
H. D. McClintock, N. Doshi, A. Iniguez-Rabago, J. C. Weaver, N. T. Jafferis, K. Jayaram, R. J. Wood, J. T. Overvelde, Adv. Funct. Mater. 2021, 31, 46.