Three-dimensional analysis of modeled facial aging and sexual dimorphism from juvenile to elderly age
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36528705
PubMed Central
PMC9759541
DOI
10.1038/s41598-022-26376-8
PII: 10.1038/s41598-022-26376-8
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- nos MeSH
- obličej * MeSH
- oči MeSH
- pohlavní dimorfismus * MeSH
- senioři MeSH
- stárnutí MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A detailed understanding of craniofacial ontogenetic development is important in a variety of scientific disciplines dealing with facial reconstruction, forensic identification, ageing prediction, and monitoring of pathological growth, including the effect of therapy. The main goals of this study were (1) the construction of the facial aging model using local polynomial regression fitting separately for both sexes, (2) evaluation of the aging effect not only on facial form as a whole but also on dimensions important for clinical practice, and (3) monitoring of the development of shape facial sexual dimorphism. Our study was based on the form and shape analysis of three-dimensional facial surface models of 456 individuals aged 14-83 years. The facial models were obtained using a structured light-based optical scanner and divided (for some analyses) into four age categories (juveniles, young adults, middle adults, and elderly adults). The methodology was based on geometric and classic morphometrics including multivariate statistics. Aging in both sexes shared common traits such as more pronounced facial roundness reducing facial convexity, sagging soft tissue, smaller visible areas of the eyes, greater nose, and thinner lips. In contrast to female faces, male faces increase in size until almost 30 years of age. After the age of 70, male facial size not only stagnates, like in females, but actually decreases slightly. Sexual dimorphic traits tended to diminish in the frontal and orbitonasal areas and increase in the gonial area.
Zobrazit více v PubMed
Guo J, et al. Variation and signatures of selection on the human face. J. Hum. Evol. 2014;75:143–152. doi: 10.1016/j.jhevol.2014.08.001. PubMed DOI
Wang X, et al. Roles of social knowledge and sexual dimorphism in the evaluation of facial attractiveness. J. Exp. Soc. Psychol. 2020;88:103963. doi: 10.1016/j.jesp.2020.103963. DOI
Marcus JR, et al. Use of a three-dimensional, normative database of pediatric craniofacial morphology for modern anthropometric analysis. Plast. Reconstr. Surg. 2009;124(6):2076–2084. doi: 10.1097/PRS.0b013e3181bf7e1b. PubMed DOI
Brons S, et al. Methods to quantify soft-tissue based facial growth and treatment outcomes in children: a systematic review. PLoS One. 2012;7(8):e41898. doi: 10.1371/journal.pone.0041898. PubMed DOI PMC
Sforza C, et al. Age- and sex-related changes in three-dimensional lip morphology. Forensic Sci. Int. 2010;200(1–3):182.e1–182.e7. PubMed
Hammond P, Suttie M. Large-scale objective phenotyping of 3D facial morphology. Hum. Mutat. 2012;33(5):817–825. doi: 10.1002/humu.22054. PubMed DOI PMC
Cunha E, et al. The problem of aging human remains and living individuals: a review. Forensic Sci. Int. 2009;193(1–3):1–13. doi: 10.1016/j.forsciint.2009.09.008. PubMed DOI
Mydlová M, Dupej J, Koudelová J, Velemínská J. Sexual dimorphism of facial appearance in ageing human adults: a cross-sectional study. Forensic Sci. Int. 2015;257:519e1–519e9. doi: 10.1016/j.forsciint.2015.09.008. PubMed DOI
Enlow DH, Hans MG. Essentials of Facial Growth. WB Saunders Company; 1996.
Bulygina E, Mitteroecker P, Aiello L. Ontogeny of facial dimorphism and patterns of individual development within one human population. Am. J. Phys. Anthropol. 2006;131(3):432–443. doi: 10.1002/ajpa.20317. PubMed DOI
Kahn DM, Shaw RB. Overview of current thoughts on facial volume and aging. Facial Plast. Surg. 2010;26(5):350–355. doi: 10.1055/s-0030-1265024. PubMed DOI
Coleman SR, Grover R. The anatomy of the aging face: volume loss and changes in 3-dimensional topography. Aesthet. Surg. J. 2006;26(1S):S4–S9. doi: 10.1016/j.asj.2005.09.012. PubMed DOI
Mendelson B, Wong C-H. Changes in the facial skeleton with aging: implications and clinical applications in facial rejuvenation. Aesthet. Plast. Surg. 2012;36(4):753–760. doi: 10.1007/s00266-012-9904-3. PubMed DOI PMC
Robertson JM, Kingsley BE, Ford GC. Sexually dimorphic faciometrics in humans from early adulthood to late middle age: dynamic, declining, and differentiated. Evol. Psychol. 2017;15(3):1474704917730640. doi: 10.1177/1474704917730640. PubMed DOI PMC
Agnihotri G, Singh D. Craniofacial anthropometry in newborns and infants. Iran J Pediatr. 2007;17(4):332–338.
Frayer DW, Wolpoff MH. Sexual dimorphism. Annu. Rev. Anthropol. 1985;14:429–473. doi: 10.1146/annurev.an.14.100185.002241. DOI
Snodell SF, Nanda RS, Currier GF. A longitudinal cephalometric study of transverse and vertical craniofacial growth. Am. J. Orthod. Dentofac. Orthop. 1993;104(5):471–483. doi: 10.1016/0889-5406(93)70073-W. PubMed DOI
Doual JM, Ferri J, Laude M. The influence of senescence on craniofacial and cervical morphology in humans. Surg. Radiol. Anat. 1997;19(3):175–183. doi: 10.1007/BF01627970. PubMed DOI
Pecora NG, Baccetti T, McNamara JAJ. The aging craniofacial complex: a longitudinal cephalometric study from late adolescence to late adulthood. Am. J. Orthod. Dentofac. Orthop. 2008;134(4):496–505. doi: 10.1016/j.ajodo.2006.11.022. PubMed DOI
Jacob HB, Buschang PH. Vertical craniofacial growth changes in French-Canadians between 10 and15 years of age. Am. J. Orthod. Dentofac. Orthop. 2011;139(6):797–805. doi: 10.1016/j.ajodo.2010.02.032. PubMed DOI
Bergman RT, Waschak J, Borzabadi-Farahani A, Murphy NC. Longitudinal study of cephalometric soft tissue profile traits between the ages of 6 and 18 years. Angle Orthod. 2014;84(1):48–55. doi: 10.2319/041513-291.1. PubMed DOI PMC
Kau CH, et al. Reliability of measuring facial morphology with a 3-dimensional laser scanning system. Am. J. Orthod. Dentofac. Orthop. 2005;128(4):424–430. doi: 10.1016/j.ajodo.2004.06.037. PubMed DOI
Nute SJ, Moss JP. Three-dimensional facial growth studied by optical surface scanning. J. Orthod. 2000;27(1):31–38. doi: 10.1093/ortho/27.1.31. PubMed DOI
Kau CH, Richmond S. Three-dimensional analysis of facial morphology surface changes in untreated children from 12 to 14 years of age. Am. J. Orthod. Dentofac. Orthop. 2008;134(6):751–760. doi: 10.1016/j.ajodo.2007.01.037. PubMed DOI
Djordjevic J, et al. Three-dimensional longitudinal assessment of facial symmetry in adolescents. Eur. J. Orthod. 2013;35(2):143–151. doi: 10.1093/ejo/cjr006. PubMed DOI
Primozic J, Perinetti G, Contardo L, Ovsenik M. Facial soft tissue changes during the pre-pubertal and pubertal growth phase: a mixed longitudinal laser-scanning study. Eur. J. Orthod. 2017;39(1):52–60. doi: 10.1093/ejo/cjw008. PubMed DOI
Matthews HS, et al. Modelling 3D craniofacial growth trajectories for population comparison and classification illustrated using sex-differences. Sci. Rep. 2018;8:4771. doi: 10.1038/s41598-018-22752-5. PubMed DOI PMC
Koudelová J, Hoffmannová E, Dupej J, Velemínská J. Simulation of facial growth based on longitudinal data: age progression and age regression between 7 and 17 years of age using 3D surface data. PLoS One. 2019;14(2):e0212618. doi: 10.1371/journal.pone.0212618. PubMed DOI PMC
Ferrario VF, Sforza C, Poggio CE, Schmitz JH. Soft-tissue facial morphometry from 6 years to adulthood: a three-dimensional growth study using a new modeling. Plast. Reconstr. Surg. 1999;103(3):768–778. doi: 10.1097/00006534-199903000-00002. PubMed DOI
Ferrario VF, Sforza C, Serrao G, Ciusa V, Dellavia C. Growth and aging of facial soft tissues: a computerized three-dimensional mesh diagram analysis. Clin. Anat. 2003;16(5):420–433. doi: 10.1002/ca.10154. PubMed DOI
Velemínská J, et al. Surface facial modelling and allometry in relation to sexual dimorphism. Homo. 2012;63(2):81–93. doi: 10.1016/j.jchb.2012.02.002. PubMed DOI
Skomina Z, Verdenik M, Hren NI. Effect of aging and body characteristics on facial sexual dimorphism in the Caucasian population. PLoS One. 2020;15(5):e0231983. doi: 10.1371/journal.pone.0231983. PubMed DOI PMC
Velemínská J, et al. Age-related differences in cranial sexual dimorphism in contemporary Europe. Int. J. Legal. Med. 2021;135(5):2033–2044. doi: 10.1007/s00414-021-02547-6. PubMed DOI
Cleveland WS, Grosse E, Shyu WM. Local regression models. In: Chambers John M, Hastie TJ., editors. Statistical models in S. Routledge; 2017. pp. 309–376.
Claes P, et al. Modeling 3D facial shape from DNA. PLoS Genet. 2014;10(3):e1004224. doi: 10.1371/journal.pgen.1004224. PubMed DOI PMC
Alley TR. Social and Applied Aspects of Perceiving Faces. Psychology Press; 2013.
Henderson AJ, Holzleitner IJ, Talamas SN, Perrett DI. Perception of health from facial cues. Philos. Trans. R. Soc. B. 2016;371:20150380. doi: 10.1098/rstb.2015.0380. PubMed DOI PMC
Samal A, Subramani V, Marx D. Analysis of sexual dimorphism in human face. J. Vis. Commun. Image Represent. 2007;18(6):453–463. doi: 10.1016/j.jvcir.2007.04.010. DOI
Albert AM, Ricanek KJ, Patterson E. A review of the literature on the aging adult skull and face: implications for forensic science research and applications. Forensic Sci. Int. 2007;172(1):1–9. doi: 10.1016/j.forsciint.2007.03.015. PubMed DOI
Gualdi-Russo E. Longitudinal study of anthropometric changes with aging in an urban Italian population. Homo. 1998;49:241–259.
Windhager S, et al. Facial aging trajectories: a common shape pattern in male and female faces is disrupted after menopause. Am. J. Phys. Anthropol. 2019;169(4):678–688. doi: 10.1002/ajpa.23878. PubMed DOI PMC
Chen W, et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 2015;25:574–587. doi: 10.1038/cr.2015.36. PubMed DOI PMC
Liu Y, Kau CH, Talbert L, Pan F. Three-dimensional analysis of facial morphology. J. Craniofac. Surg. 2014;25(5):1890–1894. doi: 10.1097/01.SCS.0000436677.51573.a6. PubMed DOI
Celebi AA, Kau CH, Femiano F, Bucci L, Perillo L. A three-dimensional anthropometric evaluation of facial morphology. J. Craniofac. Surg. 2018;29(2):304–308. doi: 10.1097/SCS.0000000000004110. PubMed DOI
Sforza C, et al. Age- and sex-related changes in the soft tissues of the orbital region. Forensic Sci. Int. 2009;185:115.e1–115.e8. doi: 10.1016/j.forsciint.2008.12.010. PubMed DOI
Modabber A, et al. Three-dimensional evaluation of important surgical landmarks of the face during aging. Ann. Anat. 2020;228:151435. doi: 10.1016/j.aanat.2019.151435. PubMed DOI
Lambros V. Facial aging: a 54-year, three-dimensional population study. Plast. Reconstr. Surg. 2020;145:921–928. doi: 10.1097/PRS.0000000000006711. PubMed DOI
Park DH, Choi WS, Yoon SH, Song CH. Anthropometry of asian eyelids by age. Plast. Reconstr. Surg. 2008;121(4):1405–1413. doi: 10.1097/01.prs.0000304608.33432.67. PubMed DOI
Farkas LG, Katic MJ, Forrest CR. International anthropometric study of facial morphology in various ethnic groups/races. J. Craniofac. Surg. 2005;16(4):615–646. doi: 10.1097/01.scs.0000171847.58031.9e. PubMed DOI
Gupta VP, Sodhi PK, Pandey RM. Normal values for inner intercanthal, interpupillary, and outer intercanthal distances in the Indian population. Int. J. Clin. Pract. 2003;57(1):25–29. PubMed
Zankl A, Eberle L, Molinari L, Schinzel A. Growth charts for nose length, nasal protrusion, and philtrum length from birth to 97 years. Am. J. Med. Genet. 2002;111:388–391. doi: 10.1002/ajmg.10472. PubMed DOI
Posen JM. A longitudinal study of the growth of the nose. Am. J. Orthod. 1967;53(10):746–756. doi: 10.1016/0002-9416(67)90119-4. PubMed DOI
Sforza C, Grandi G, De Menezes M, Tartaglia GM, Ferrario VF. Age- and sex-related changes in the normal human external nose. Forensic Sci. Int. 2010;204:205.e1–205.e9. PubMed
Genecov JS, Sinclair PM, Dechow PC. Development of the nose and soft tissue profile. Angle Orthod. 1990;60(3):191–198. PubMed
Torlakovic L, Færøvig E. Age-related changes of the soft tissue profile from the second to the fourth decades of life. Angle Orthod. 2011;81(1):50–57. doi: 10.2319/042110-215.1. PubMed DOI PMC
Toma AM, Zhurov A, Playle R, Richmond S. A three-dimensional look for facial differences between males and females in a British-Caucasian sample aged 151/2 years old. Orthod. Craniofac. Res. 2008;11(3):180–185. doi: 10.1111/j.1601-6343.2008.00428.x. PubMed DOI
Prahl-Andersen B, Ligthelm-Bakker ASWMR, Wattel E, Nanda R. Adolescent growth changes in soft tissue profile. Am. J. Orthod. Dentofac. Orthop. 1995;107(5):476–483. doi: 10.1016/S0889-5406(95)70114-1. PubMed DOI
Caisey L, et al. Influence of age and hormone replacement therapy on the functional properties of the lips. Skin Res. Technol. 2008;14(2):220–225. doi: 10.1111/j.1600-0846.2007.00283.x. PubMed DOI
Akgül AA, Toygar TU. Natural craniofacial changes in the third decade of life: a longitudinal study. Am. J. Orthod. Dentofac. Orthop. 2002;122(5):512–522. doi: 10.1067/mod.2002.128861. PubMed DOI
Rosati R, et al. The labial aging process: a surface analysis-based three-dimensional evaluation. Aesthet. Plast. Surg. 2014;38(1):236–241. doi: 10.1007/s00266-013-0227-9. PubMed DOI
Möller M, et al. Reference values for three-dimensional surface cephalometry in children aged 3–6 years. Orthod. Craniofac. Res. 2012;15(2):103–116. doi: 10.1111/j.1601-6343.2012.01541.x. PubMed DOI
Sharma P, Arora A, Valiathan A. Age changes of jaws and soft tissue profile. Sci. World J. 2014;2014:301501. doi: 10.1155/2014/301501. PubMed DOI PMC